1
JERI - Draft

JERI (Java Epics Rdb Interface), EPICS and the relational database at the Spallation Neutron Source

Jeff Patton, Chris Fowlkes

 Introduction

At the SNS our goal is to have an integrated relational database environment which is the central, official repository for all data that will be programmatically accessed, queried on a consistent basis or in some fashion makes sense for the RDB be the repository for the information. From an EPICS control system standpoint, the desire is for the RDB to be the official repository of device and signal (PV) information with generation of .db or .template files being made from either VDCT or JERI. Furthermore the goal is for the generation of startup, archive, alarm and other files to be made from JERI. Before the current state of JERI is detailed, it is important to have a clear understanding of the underlying RDB structure and the software development environment.
Software development tools

Data Model: Embarcedero ER/Studio

Database: Oracle Enterprise Edition(EE) RDBMS server version 9.2.0.4. At this time JERI is not using EE features such as partitioning and as such it is possible to use Oracle Standard Edition. With some modification it would be possible for JERI to work with any RDB that has a JDBC driver.

Programming language: Java 1.4.2, PL/SQL

IDE: Oracle JDeveloper. While SNS uses JDeveloper as its Java Integrated Development Environment tool, JERI has been written to not use any proprietary Java classes and as such can be developed in any Java IDE or text editor.

Data Environment

The SNS data model is available on the web at:

 http://shawnee.sns.ornl.gov/mis/EnterpriseModel/index.htm
The SNS data model is comprised of 6 subject areas: EPICS, Equipment, Cable, Logbook, Magnet and Operations. Each of these subject areas translate physically into Oracle database schemas EPICS, EQUIP, CABLE, LOGBOOK, MAGNET and OPER respectively. While at first glance it may seem that EPICS is the only subject area of interest for JERI, the EPICS file generation will access information residing in other subject areas, taking advantage of the power of data integration.

SNS Naming Standard

Before the structure of the EPICS subject area can be examined it is necessary to define how signals are named at SNS.

Signal IDs at SNS are broken down into a device and a signal name. A device is defined as a piece of equipment or component which produces or receives signals. The device identifier is broken down into System, Subsystem, Device Type and Device Instance. This gives a signal id that is formatted as follows:

S – System: Mandatory and validated

B – Subsystem: Optional and validated. Delimited by “_”.

D – Device Type: Mandatory and validated. Delimited by “:”

I – Device Instance: Optional. If device instance starts with an alphabetic character then it is delimited with an “_”, if it starts with a numeric then no delimiter is used. (However,device instances are allowed to start with _ before a numeric.)
X – Signal name: Mandatory. Delimited by “:”. Signal names can be free form but use of standards lists are encouraged.
 (i.e.MEBT_Mag:QV11:fieldRB; MEBT_Mag:PS_QH12:I)

EPICS Subject Area

A large number of the entities in the EPICS subject area handle the SNS device information both for the SNS Controls and Application Physics groups, driven by the Dvc entity as the super-type with many sub-type entities.

For EPICS, the root entities are the:

Sgnl Rec: Signal Record: The master list of valid EPICS signal identifiers.

Sgnl Fld: Signal Field: The Field definitions and values for a given signal id.
Sgnl Rec Type: Signal Record Type: The master table containing valid EPICS Record Types.
Sgnl Fld Def: Signal Field Definition: The master table of the EPICS field definitions for each record type.

Sgnl Fld Menu: Signal Field Menu. The master table of EPICS menu values for each menu id.

[image: image1.jpg]

When a device id is created its components are validated against the system, subsystem, device type validation tables. In turn, when the signal id is created the device name in the signal id is validated against the Dvc table. It is recognized that naming standards in the EPICS environment are an often emotional issue with differing opinions. At the SNS, signal IDs are generated by several individuals from several partnering labs. As such, provisions have been made in the data structure to allow signal IDs that are invalid as defined by the SNS naming standard. A key point to make concerning validation is that it is possible to disassociate the SNS device from the EPICS entities such that another naming scheme can be used. In the SGNL_REC entity (Figure 3) there is a foreign key relationship to the dvc_id in the DVC entity. When a signal is inserted into this table, it is parsed and the device identifier part of the signal name is validated against the DVC entity. Removing this attribute will allow the EPICS structure to stand alone.
[image: image2.jpg]
Data Integrity

As in any integrated environment there are more people wanting to use the data than those who want to provide it. Owners of the data often have favored tools they like to use for data capture so there are many avenues for the data to be loaded into the RDB. As much as possible the data validations and business rule enforcement are performed within the RDB through constraints, triggers and stored procedures and functions. The advantage of this approach is two fold; the validation and business rule logic is written once and when the rules invariably change, the logic is updated in one place. Secondly, if the user enters data into the RDB using a tool other than JERI, the data is still validated.
JERI

Design Approach
The design approach to JERI was driven by several goals. The first goal was that JERI should be written in a powerful platform independent language and that it would have no proprietary restrictions so the software could be shared with other facilities with no legal or monetary restrictions. Java met the language requirement and JERI has been written using no proprietary third party extensions. JERI is currently running on Windows and Linux workstations and servers without any UI modifications specific to a platform.

JERI should be accessible from anywhere there is a network connection. A Java Applet approach was briefly considered but was abandoned due to several technical problems that are difficult to overcome in an Applet environment. JERI needs to read and write files to the local machines’ file system. The Java Applet architecture restricts this without the use of the Security Model, which by all accounts is very difficult to implement. Second, there are numerous implementations and versions of the JVM plug-in for the web browsers that introduce a host of compatibility issues. To meet this goal, JERI is written as a Java application which uses Java Web Start to launch the application. Information on Java Web Start is available at:

http://java.sun.com/products/javawebstart/
This approach does require that the Java Runtime Environment be installed on the workstation or server and a web server be available to host the JERI jar files.

In a software development project it often takes less time to capture requirements, do the system analysis, document the new requirements in the data model and make the physical transformation into the database structure than the time it takes to write the new user interface code. JERI is designed to be as data structure and data driven as possible. The Java JTable object is used to provide a lightweight spreadsheet editing model that reads the RDB data dictionary to determine the tables whose data can be edited. The use of this design approach will be seen as the JERI features are discussed.
To this point in time many of JERI’s features have been driven by the need to create and maintain the data necessary to support the creation of EPICS files. It is recognized that more input is needed from the SNS and the broader EPICS community to shape the user interface.

Features

JERI requires the user to have a database account to use the application.

[image: image3.png]

The RDB pick from list allows the user to access either the SNS development or production database.

[image: image4.png]

Currently JERI consists of 5 distinct sets of functions grouped under the File, Device, Signal, Cable and Reports menu items.

File

The File menu is where all the file .db, .dbd, .template, and libobjs import functions and export file functions reside. While our final goal at SNS is for the VDCT and JERI to be the two sources of file generation, it is recognized that the engineers and technicians are using several different tools to generate files and there needs to be a mechanism to import that data into the RDB so it can be manipulated, reported on and used by other systems.

[image: image5.png]

[image: image6.jpg]

In the EPICS environment there is the possibility of many .db files for an IOC residing in many different directories. A user wanting to import a large number of files would have to go to each directory where the .db files reside to start the file import process. If the user desires to import files created by someone else they would first have to locate all the directories the files reside in. The Parse Startup Function reads the startup.cmd file to resolve all file references so the user does not have to go through the tedious process of locating and then importing the files. EPICS is a very flexible software system that gives the user many ways to approach the file setup and directory referencing. It should be noted that there are approaches that have yet to be programmed into JERI.

If the user has a small number of files they wish to import and know the directory location, they can use the .db Files tab, which works with a single directory. It should be noted that JERI can handle expanded .db, .template and .substitution files.

[image: image7.jpg]

Finally when the user is ready to import the file contents into the RDB the contents of the file and the corresponding content of the matching devices in the RDB are displayed for the user so they can review the data before it is committed to the RDB.

[image: image8.jpg]

Color feedback is provided to the user. Red means there is an error with the signals for a device. The error can be for signals being imported or for those already imported into the RDB. Blue means that the signals do not exist in the RDB. Black means the signals already exist and are the same.

The file export functions will be discussed later in the document where they tie into the function being discussed.

Device

The device function is where the SNS device data is maintained. The device edit framework uses a common navigation toolbar that will be seen in other JERI functions. The available buttons are Commit, Rollback, Filter data, Remove Filter, Advance to top of data, back to previous line, advance to next line, and advance to the bottom of the data, add record, delete record, post edit, cancel edit and refresh data. The table data available to edit can be chosen from the pick from list. As mentioned previously JERI reads the data dictionary to determine the table names and table columns available to be edited. In the devices function the tables in the pick from list are determined by the pulling in the Dvc supertype table and all tables whose name ends in a “_dvc”. Using this model any new device tables created are automatically available in JERI.

[image: image9.jpg]

There will often be a need to create a large number of devices. To aid the user in this task, the Device Wizard gives the user a way to name a large number of devices that meet the SNS naming standard.

[image: image10.jpg]

[image: image11.jpg]
[image: image12.jpg]

[image: image13.jpg]

Device Rename

There is often the need to rename a signal. At SNS the rename is most often made to the device portion of the signal id. This can be a daunting task because of the different locations where the signal resides. JERI’s rename function changes the device and signal names throughout the RDB and provides the user with feedback on every table and signal id that the can took place. (Figure 15) After reviewing the impact the rename has the user can then choose to commit the change to the database.
[image: image14.jpg]

Signal

The signal function is the where all data for and related to a signal is maintained. Like devices, there is a need to create a large number of signals. There needs to be a way to alter the field values, manage archiver, alarm and other configurations.

To aid the user in creating signal ids’, JERI has a signal naming wizard.

[image: image15.jpg]

To narrow the number of devices available to create signals ids’ for the user selects the device types of the signals. (Figure 11)

[image: image16.jpg]

From the final list of devices the users choose those devices they want to generate signals for. (Figure 17)

[image: image17.jpg]

Finally they choose the signal names. (Figure 18)

[image: image18.jpg]

Resulting in a generated group of signal ids’ meeting the SNS standard for format and naming.

At this point in the signal id generation the user can select from a list of templates which will apply to the newly generated signals to produce a complete field set in the RDB. Which in turn, can be exported as a .db or .template and .substitution files.

[image: image19.jpg]
The signal browser gives the user the ability to change field values, add new fields to the signal, set archive or alarm indicators, generate .db, alarm or archive configuration files. The user can select the set of signals to work with by choosing the subsystem from the pick from list, or use the Filter Function to work with a customized set of signals.

The most often used functions available to work with the signal data is available from the popup menu tied to the signal browser. At any point the user can click on the right mouse button to obtain the menu.

Machine Protection System (MPS)

There are certain functions such as the machine protection system whose needs are specific enough to warrant a custom interface. The JERI MPS interface takes advantage of the integrated data in the database to automate many configuration functions. When a signal is assigned to a channel the mask values are assigned according to the default values for the device type of the signal. The signal pick list itself only allows the user to pick signals that meet certain criteria, such as choosing a signal for an auto reset channel. Only auto rest signals are presented in the pick from list.

[image: image20.jpg]
[image: image21.jpg]

Conclusion

JERI now has several features for maintaining the data in the RDB. The next phase of JERI will continue to concentrate on developing the best user interfaces for the EPICS file generation. We also plan on examining the fesibility and utility of including the archive data in the RDB.
Device

Instance

Figure 1: Format and Syntax

System/Subsystem

Device

Type

Signal Name

SSS_BBBB:DDDDIIIIIII:XXXXXXXXXX

Figure 2: EPICS entities

Figure 3: Sgnl Rec entity

Figure 4: JERI login

Figure 5: JERI Main Window

Figure 6: File Menu functions

Figure 7: Import .db files from startup.cmd

Figure 8: Import .db Files

Figure 9: .db data import results

Figure 10: Device edit

Figure 16: Signal wizard device type selection

Figure 17: Signal generator device list

Figure 18: Signal generator signal name list

Figure 19: Signal generator Generated signal list

Figure 12: Device id generator – select subsystem

Figure 14: Device id generator – generate device instance

Figure 13: Device id generator – select device type

Figure 20: Signal Brower

Figure 21: Machine Protection System Signal Brower

Figure 22: MPS Signal Browser

Figure 15: Rename device/signal id

Figure 11: Device id generator – select system

