

SNS 109000000-ST0002 Rev. 0

SNS PLC ProgrammingSNS PLC ProgrammingSNS PLC ProgrammingSNS PLC Programming
GuidelinesGuidelinesGuidelinesGuidelines

 Page 2 of 13

SNS PLC PROGRAMMING GUIDELINES

January 2001

Dave Gurd
Senior Team Leader, Controls Group

 Date

CONTENTS

1. Scope ...3
2. The ControlLogix PLC and Ethernet ..3
3. PLC Programming (Not Related to Ethernet Communications)...4

3.1 PLC I/O Processing...4
3.2 Contacts, Normally Open or Closed ..4
3.3 PLC Configuration Requirements..5
3.4 Alias Tags ...5

4. Guidelines for Integrating the PLC into EPICS ...5
4.1 EPICS Inputs and Outputs to the PLC ..5
4.2 Scan Rates ..7
4.3 Engineering Units Conversion ...8
4.4 Alarm and Interlock Handling..9
4.5 PLC Diagnostics ...10
4.6 Local/Remote Operation ...10
4.7 Command Signals from EPICS to the PLC..11
4.8 Signal Naming...11
4.9 PLC Component Naming ..12

 Page 3 of 13

SNS PLC PROGRAMMING GUIDLINES

Acronyms used:
A-B Allen Bradley
EPICS Experimental Physics and Industrial Control System
EtherNet/IP Allen-Bradley “Ethernet Industrial Protocol”
IOC Input/Output Controller
PLC Programmable Logic Controller
T/C Thermocouple

1. SCOPE

These guidelines apply to Allen-Bradley ControlLogix PLCs that communicate with EPICS
IOCs via the 1756-ENET Ethernet interface.1 These guidelines focus primarily on how to
implement the PLC-EPICS interface, but cover some other PLC programming issues as well.

2. THE CONTROLLOGIX PLC AND ETHERNET

The ControlLogix PLC uses “tags” to store pieces of data internally. This allows use of
meaningful names in the PLC ladder logic and makes arrays and user-defined tags available.

An IOC can access any tag in the “Controller Tags” section of the PLC ladder logic. These
tags are global variables, and they include the tags of I/O modules that are automatically created
by the RS Logix programming software. (Note that the IOC cannot access “Program Tags”).
The EPICS system can read and write scalar BOOL. SINT, INT, DINT, REAL, and tags, as well
as array elements of those types.

Set-up of the Ethernet interface is different from a ControlNet interface in that no additional
setup is required for either the PLC (e.g. you don’t have to “publish” selected tags) or the
ControlNet network (e.g. you don’t have to go through the configuration process of distributing
bandwidth between the nodes on the network).

Each single tag transfer to EPICS takes ~8ms, so data elements should be combined and
transferred as array tags. For example, transferring an array of REAL[40] takes only a little longer
than 8ms whereas individual transfers of 40 REALS would take 40*8ms = 320ms. The IOC
software automatically combines requests for array elements into whole-array transfers, so you

1 Early in the SNS project two methods of interfacing EPICS to ControlLogix PLCs were evaluated:

EtherNet/IP and ControlNet. After evaluation the EtherNet/IP approach was chosen as the standard interface to be
used by SNS. At the time this was written there were no plans to support the ControlNet interface to IOCs.
However, should ControlNet (or any other ControlLogix PLC interface) be supported at a later date, many elements
of these guidlelines could be applied to that interface as well. Note that ControlNet is still the preferred method for
PLC-to-PLC communications.

 Page 4 of 13

can lower the transfer overhead by using array tags. The PLC Ethernet driver has a transfer buffer
limit of 500 bytes, so the sizes of the arrays that may be transferred have finite limits.

3. PLC PROGRAMMING (NOT RELATED TO ETHERNET COMMUNICATIONS)

3.1 PLC I/O Processing
Allen-Bradley PLCs asynchronously read inputs, so inputs can change state part of the way

through a scan and affect the way the PLC logic is designed to function. Therefore all PLC inputs
should be scanned into input buffer arrays (analog and discrete) at the beginning of each program
scan. This will ensure that any sequence-dependent logic will operate on a time-consistent set of
inputs.

Figure 3.1 – PLC Buffering

PLC output modules should be configured to set the outputs to a known fail-safe state in the
event communication to the PLC processor fails, the PLC is not in the “Run” Mode, or the output
module fails.

3.2 Contacts, Normally Open or Closed
 All switches and contacts should be wired in a fail-safe manner such that (1) a closed contact
indicates a "good", "normal", or "known" condition and (2) an open contact indicates an "alarm",
"off normal", or "unknown" condition.

Local
Input
Module
Points

Local digital
and analog
input signals

PLC Logic

EPICS
IOC

Ether
IP
driver AO & BO

arrays

AI & BI
arrays
(buffers)

Local
Output
Module
Points

Local output
signals to
field control
devices

PLC

Device
Net
Points

DeviceNet
signals
(Remote I/O,
MCC, VFD,
etc.)

Control
Net
Points

ControlNet
signals
(Remote I/O,
other PLCs,
etc.)

Snapshot written at
beginning of each scan

Note (1) – Solid lines indicate “copy values to/from continuously/in-real-time/asynchronously”, i.e. normal operation
Note (2) – Dashed lines indicate “copy values to/from buffers at the beginning of the PLC scan”
Note (3) - Dash/dot lines indicate asynchronous, constant-time-interval-based transfers. ControlNet parameters will be handled the
same way as DeviceNet parameters. These will be set up to scan at predetermined time intervals (e.g. 200msec.) on a parameter-by-
parameter basis.

 Page 5 of 13

 Position switches should be furnished on valves to provide positive indication of the valve
position at each end of travel. Each limit switch should be wired so that a closed contact indicates
the valve is in the position being monitored, e.g., an upper limit contact will be closed when the
valve is at its upper limit. With this configuration, operators’ screens will show the valve in
transition if both contacts are open. This is also the resulting (and desired) indication if the valve
I/O cable is disconnected.
 Status switches (e.g. a high-pressure switch, a low-level switch, etc.) should be wired fail-safe
such that a closed contact indicates a "normal" or "good" condition. Thus, if a wire is cut the "off
normal" or "alarm" condition is indicated.
 Travel limit switches on motor actuated devices should be wired so that an open contact
indicates the device is in the position monitored by the switch. This provides fail-safe operation.
If a wire is broken, the indication will be that the device is at its limit position and the motor drive
will not attempt to move the device past its limit position.

3.3 PLC Configuration Requirements
 Because we plan to use diagnostics to detect module problems, do not configure I/O modules
for rack optimization. (While rack optimization conserves ControlNet connections, it does not
allow the diagnostics to function).
 Variables should be passed between PLCs using arrays in order to conserve the number of
ControlNet connections. The ControlNet arrays should be named as specified in section 4.8
below. ControlNet node numbering and other ControlNet conventions should follow guidelines
provided by Allen Bradley. The PLC controller name in RSLogix should be the same as the SNS
device name of the PLC.

3.4 Alias Tags
 Use “alias tags” in the PLC to keep the ladder logic readable. For performance reasons, the
data for e.g. “water inlet temperature” might reside in the REAL array element P10R5[17] (see
array name guidance in a later section). The RS Logix software allows for the creation of an alias
(e.g. “WtrTIn = P10R5[17]”) so that the programmer can use the more meaningful alias tag in the
ladder logic while the EPICS IOC can transfer the value as part of the P10R5 array.
 Use “alias tags” in the PLC to keep the ladder logic readable. e.g.: For performance reasons
the data for “water inlet temperature” might reside in the REAL array element P10R5[17] (see
array name guidance in a later section). The RS Logix software allows for the creation of an alias
(e.g. “WtrTIn = P10R5[17]”) so that the programmer can use the more meaningful alias tag in the
ladder logic while the EPICS IOC can transfer the value as part of the P10R5 array.

4. GUIDELINES FOR INTEGRATING THE PLC INTO EPICS

4.1 EPICS Inputs and Outputs to the PLC
EPICS inputs should be read from the same input buffer that the PLC logic reads from. (Ref.

figure 3.1 above).
 Keep the arrays unidirectional: Arrays of data that the PLC produces for the IOC to read
should be different from arrays that the IOC writes into for the PLC to read.

 Page 6 of 13

 Array transfer to and from EPICS is more efficient than transferring individual tags.
EtherNet/IP data transfer packets cannot be longer than (approximately) 500 bytes, so array sizes
must be limited. Transferred data includes tag names whose length can vary. Rather than try to
manually figure out the absolute maximum number of elements that can be transferred for a given
array, it is recommended that you use “medium-sized” arrays and let the driver handle the transfer
size calculations. The EtherNet/IP driver will check the exact request and response lengths and
build a data packet sized as large a as permissible (i.e. below the 500 byte limit). Therefore if you
use sizes of 40 elements for REAL arrays and 350 elements for BOOL arrays, the EtherNet/IP
driver will typically be able to combine 2-3 requests into one transfer.
 Listed below are suggested ways of handling the data arrays being sent to EPICS.

1. Binary data - put bits (digital, binary data) into Boolean arrays (BOOL type for the

ControlLogix PLC). This allows efficient transfers between the IOC and the PLC. Array size
should be no larger than 350 bits.

To make the PLC code more readable, aliases can be used e.g.

BOOL bin_array[350]
BOOL InpValveOpen = bin_array[5]

 Put related bits next to each other in the array. Multi-bit binary inputs in EPICS expect the
bits to be contiguous. An example of this type of device is a valve with a bit for open and a bit
for closed which is read into a 2 bit, 4 state mbbi record:
 0, 0 ⇒ open/traveling
 1, 0 ⇒ at left limit switch
 0, 1 ⇒ at right limit switch
 1, 1 ⇒ error

 The same applies to a value where limits are checked within the PLC program. e.g.
Binary tags used to indicate a limit excursion could be put in adjacent array elements like this:

 P30B[42] = low limit hit, P30B[43] = high limit hit.

Then the individual limit conditions can be read as well as the combination of “OK” (00),
“low” (10), “high” (01) or “error” (11).
 Try to avoid DINT arrays where only few bits per DINT are used. The same applies to
INT arrays. Instead, put those bits into BOOL arrays.

2. Analog data – PLC analog values (REAL, DINT, INT) should also be combined in array tags

for efficiency. Array size should be no larger than 40 values. As with binary data, alias tags
can be used to make the ladder logic more readable, e.g.:

REAL readbacks[40]
REAL in_flow_sensor = readbacks[2]

 Page 7 of 13

 Arrays should also be grouped by update rate if the IOC can transfer some of them at a
slower rate, reducing the network load (e.g. have arrays for readbacks read at 10Hz, arrays
read at 1 Hz, etc.). Arrays may also be grouped by function: e.g. setpoints, readbacks, limits,
etc. This can help to limit the individual array size as required by the PLC buffer limit.

 Note that a given array can consist of only one type of variable. Structures are not supported
and must not be used.
 As indicated above, one design approach is to put related signals in the same relative location
in separate arrays. However this might not be the best approach for all systems. Study the analog
signals for your system and organize them into groups. Establish and document a pattern for each
grouping of signals. Design the EPICS buffers for easy comprehension and efficient transfer of
data between the PLC and EPICS.

4.2 Scan Rates
 The rate at which the EtherNet/IP driver reads from the PLC is configured in the EPICS
record via the user-specified SCAN rate parameter. When several records refer to elements of an
array tag, the driver uses the fastest requested scan rate. Thus one should set the scan rate for all
elements of a given array to the same rate.
 For records configured with “SCAN = xxx” seconds, the maximum scan rate is 10 Hz by
default. Higher rates can be used, but the rate is limited by the ~8ms transfer time per request.
The absolute upper limit is ~100 Hz where only one tag is transferred. For records configured
with “SCAN=I/O Intr”, the INP/OUT field specifies the scan period. In that case, non-standard
periods can be used, e.g. 20Hz.
 Keep in mind that network transfers could be delayed. If a PLC output has to be on for 0.1
second, do not expect the IOC to toggle it on and then off in this time. Instead, implement a
handshaking mechanism via “operate” and “done” tags. When the IOC writes to the operate tag,
the PLC will switch the output on for exactly 0.1 seconds. When done, the PLC will increment a
“done” tag. This way the 0.1 second duration is not hampered by network delays.
 The ControlLogix Ethernet adapter module receives and transmits Ethernet packets over the
network. It does some work on the packets and exchanges data with the PLC processor module.
The PLC module processes I/O during its overhead time slice, which by default is set to 10% of
the processor time. If there is a lot of PLC-IOC Ethernet traffic then there may not be sufficient
time for all data to be exchanged between the Ethernet adapter and the PLC processor, resulting
in lost data. When a continuous task (i.e. ladder logic) is running in the PLC, data starts getting
lost when more than approximately 60-70 Ethernet packets per second are processed. The
number of packets processed may be increased by increasing the overhead time slice.
 Three (3) Ethernet packets are generated for each read and write operation between the PLC
and the IOC EtherNet/IP driver. The approximate number of packets per second to be processed
for EtherNet/IP communication may be calculated by:

(NAR + NAW) * 3

where:
NAR = number of arrays read from the PLC per second
NAW = number of arrays written to the PLC per second

 Page 8 of 13

 There may also be other Ethernet communications to a PLC. When a programming terminal
is connected to the PLC via Ethernet, 10 to 30 packets per second are exchanged between the
PLC and the programming terminal. For some systems, there may be Ethernet messages
between/among PLCs. This traffic must be included in the total number of packets processed.

4.3 Engineering Units Conversion
 It is “designers choice” as to where to convert to engineering units: in the PLC or the IOC.
There are advantages and disadvantages for each method. Once the decision is made it should be
consistently applied for a given PLC interface.
 Use real values, not integers, for all analog signals transferred.

 Converting in the IOC: Converting to engineering units in the IOC has the following
advantages:

• The raw value, the conversion method and parameters, as well as the engineering value

and units, are accessible over Channel Access.
• The configuration can be kept in the overall configuration database. Changes can be

archived and restored.

 Converting in the PLC Modules: Thermocouple and RTD signals can be converted to
engineering units by the T/C and RTD PLC input modules. Linear analog input signals can be
converted to engineering units by the analog PLC input modules. An example of a linear module
conversion follows.
 Suppose we have a pressure transmitter with a 4 – 20 mA output that is calibrated such that 4
mA = 0 atm and 20 mA = 30 atm. The analog input module should be configured per the
following table:

Table 4.3-1. Example Input Module Engineering Units Conversion

Input signal
(mA):

Value in
PLC (atm):

0 -7.5
4 0.0
8 7.5

12 15.0
16 22.5
20 30.0

 Scale analog output modules as follows. Configure the current modules to scale the 4 to 20
ma signals so that 0.0 mA = –25.0% and 20.0 mA = 100.0 %. This allows the module to continue
sending valid data if there is a slight offset at 4 mA. Configure the voltage modules to scale the 0
to 10 VDC signal to 0.0 to 100.0 %.

 Page 9 of 13

Table 4.3-2. Example Output Module Engineering Units Conversion

Value in
PLC (%):

Output
signal (mA):

-25 0
0 4

25 8
50 12
75 16

100 20

 While it is possible to perform non-linear engineering units conversions using PLC logic, it is
generally easier to do so in the IOC. Therefore, for signals requiring non-linear engineering unit
conversions the PLC input modules should be configured such that the engineering units are in
“mA” (i.e. 4 mA input ⇒ 4 mA engineering units value and 20 mA input ⇒ 20 mA engineering
units value). EPICS can then convert the non-linear analog input signal to actual engineering
units.
 In the IOC, use the linearization (LINR) value “No Conversion” to preserve PLC-converted
values. When connecting ai/ao records to a REAL tag, the VAL field is used automatically (no
conversion). For other tag data types, the RVAL field is used and IOC-side conversions can take
place.

4.4 Alarm and Interlock Handling
 For the discussion that follows, a distinction is made between “interlock limits” and “alarm
limits”. Exceeding alarm limits results in operator notification (i.e. display actions only).
Exceeding interlock limits results in protective control actions.
 Alarm limits should be kept in the EPICS database. EPICS provides a fully-functional alarm
handler, and it is simply easier to maintain alarm values in one place.
 Interlock limits should be defined in the PLC. Don’t forget to provide some deadband on
return-to-normal to prevent interlock chatter. To allow meaningful operator screens, the PLC
should provide the IOC with the current process value, the limits, and interlock status for each
interlock. This arrangement does not allow operators to change the interlock limits from EPICS,
but at least the limits can be displayed for operators. If write access is desirable, the interface can
be expanded to include analog output records. These will allow operators to modify the interlock
limits via EPICS. Access can be restricted/denied through standard EPICS access control if
necessary.
 To generate alarms in EPICS, the alarm limits are set in the readback channel, e.g.:

ai - readback,
alarm limits {LOLO=0, LOW=1, HIGH=9, HIHI=10}

If we maintain the alarm limits in the IOC, we can read/write the alarm limits using standard
EPICS tools. Note that with the configuration described the alarm setpoints remain separate
from any interlock limits (e.g. the HIHI alarm setpoint will not change with
high_interlock_limit.VAL).

 Page 10 of 13

 It is acknowledged that there may be cases where the designer might choose to put an alarm
limit in the PLC, e.g. when it is desired that the alarm and interlock limits share the same value.
For those hopefully-rare cases, alarm limit checking should be handled as follows:

• The alarm limit check in the PLC should result in an alarm status bit being transferred to the

IOC. This alarm status can then be annunciated by the EPICS alarm handler.
• The alarm limit check should include deadband to prevent alarm chatter.
• When the alarm condition no longer exists, the PLC alarm bit should be automatically reset.

(The EPICS alarm will remain latched until the operator acknowledges and clears the alarm.
Also note that if the alarm condition still exists, an EPICS reset command will have no affect
on the PLC alarm latch bit).

4.5 PLC Diagnostics
 The PLC should provide the following diagnostic information as tags:

1. Heartbeat
2. Logic execution time (at least the last time, preferably also min/max). This can then be used

to inform operators (and in some cases IOCs) of latency problems.
3. Module failure status. Use the module status bits to alarm I/O failures by monitoring if the

word is zero (normal) or non-zero (failure).
4. Status of external connections (e.g. to Flex I/O).

 The EPICS database should keep pseudo-channels for state of the communication to the PLC
(e.g. number of timeouts/errors in communication with PLC, tag's maximum scan time, etc.).
 The EPICS Alarm Handler should be used to display any alarms generated by these status
bits. Signal names should conform to the standard SNS signal naming convention (e.g.
CF_TA:PLC8701_01EN01:Sts). See section 4.9 for PLC component naming guidelines.

4.6 Local/Remote Operation
 If a PLC value can be set by both an IOC and a local operator interface (e.g. an Allen-Bradley
PanelView terminal), a local/remote switch is required. The preferred approach is to use a
physical switch located near the local operator panel, with its status being read by the PLC.
Alternatively a software tag in the PLC can be used. In either case there must be a BOOL tag in
the PLC to indicate local/remote mode.
 For each output “X” that can be affected by both a local and a remote operator, the PLC
should have three tags:

local X - written to by the local panel,
remote X - written to by EPICS,
X - the actual output.

Depending on the local/remote switch setting, the ladder logic transfers the "local" or "remote"
value to the actual output tag. In remote mode, the local input is therefore ignored. In local
mode, the IOC might continue to run its loop and write to the "remote" value, while a "local

 Page 11 of 13

mode" indicator on the EPICS screen explains why the hardware output is not reacting to the
IOC.
 Alternatively, the interface could be set up so that a PLC value is changeable from either
EPICS or a local operator panel (i.e. both write to the same PLC register). This approach takes
advantage of the fact that EPICS output values are generally transferred only when they change in
EPICS. (Be aware that they may also be transferred when a value sharing the same array
changes). Thus it is possible to design the PLC and IOC logic to write to the same PLC register
without EPICS continuously overwriting the register. EPICS can be configured to update an IOC
output register with the latest actual value in the PLC. The IOC record’s “OMSL” field must be
set for “supervisory mode” for this to occur. The IOC output record will then periodically scan
the actual PLC output tag for changes. In principle this configuration (i.e. a single IOC output
connected to a single output tag in the PLC) would work in most cases. But an implementation
based on a local/remote switch with local/remote/output tags is cleaner and more fool-proof.

4.7 Command Signals from EPICS to the PLC
 All Boolean EPICS command signals should be momentary contacts that are latched in the
PLC2. Configure EPICS (the ‘.HIGH’ field for ‘bo’ records) to hold command signals high long
enough for the PLC to latch the command. (e.g. 1 or 2 sec.). The scan time used by the
EtherNet/IP driver (‘S t’ where t is the scan time in seconds) for output records should be set
shorter than the ‘HIGH’ time to assure that each command is transmitted to the PLC. The
EtherNet/IP scan time should be no more than 1 second for any output record. (NOTE: The
EtherNet/IP scan time MUST be the same value for all records that are elements of the same
array).
 With this approach it is possible to assert both “on” and “off” commands at the same time.
The PLC logic should be set up so that the safer state always prevails.
 As indicated in the previous section, the PLC can change the value of a command signal in
EPICS. This feature can be used to provide bumpless local/remote control switching of EPICS-
based control loops. e.g. EPICS can have one of its PID loop outputs updated to match the
corresponding PLC output value when the loop is in local mode.

4.8 Signal Naming
 The SNS naming standard should be applied to EPICS process variable names.
 The following convention should be used for naming PLC arrays:

PLC Array Name convention format: PIIIITn[x]:

• P – Producer of the data
o E = EPICS
o F = Flex I/O

2There is some small possibility that due to the asynchronous nature of the EtherNet/IP communications a
momentary-contact-style command message could get lost. A handshake approach to implementing EPICS-to-
PLC commands might reduce the chances of losing a command message, but this approach was dropped due to the
significant complexity it adds to the logic.

 Page 12 of 13

o P = PLC
o …

• IIII – PLC/EPICS/Flex I/O Identifier (e.g.: 4323, C20, etc.)
• T – Type of array

o B = Boolean
o D = Double Integer
o N = Integer
o R = Real

• n – Array Instance for the type of array
o Use odd numbers for data going to EPICS (1,3,5,…)
o Use even numbers for data coming from EPICS (2,4,6,…)

• x – Array Element

 For EtherNet/IP, PLC instance number is technically not necessary because the tag namespace
is limited to a given PLC. But since ControlNet requires this, use of PLC instance number is
recommended in any case.
.

4.9 PLC Component Naming
 PLC components should be named according to the convention illustrated in figure 4.9 below
(e.g. for PLC component failure alarms).

 Page 13 of 13

PPS_Lin:PLC01A_D0101EN01

Module or hardware type:
 PS=power supply
 CN=ControlNet module
 EN=Ethernet module for ControlLogix
 IB=discrete input module
 OB=discrete output module
 C=chassis
 LP=Processor
 IR=RTD input
 IT=Thermocouple input
 IF=Analog input
 OF=Analog output
 OW=Discrete contact ouput

Instance

PLC or IOC IP
Device Name
(replace colons with
underscore)

TYPICAL PLC or IOC COMPONENT NAME :

Sub-system

System

Slot #, position #, or chassis size

Channel address, or node number,
range: 1 - 99

PLC or IOC
Device Name

Device type: IOC or
PLC

DeviceNet instance, not used for
ControlNet components

Delimiter
Mandatory

Figure 4.9 – PLC Component Naming Diagram

References:

“Interfacing the ControlLogix PLC over EtherNet/IP”, K. Kasemir et al, ICALEPCS 2001 paper
THAP020.

See also help files maintained with the EtherNet/IP driver software in the SNS CVS repository.

