
Introduction - Purpose and Outline

In a project the size of SNS, standardization is essential. Standardization saves engineering cost
by reducing the number of different hardware and software modules that require development; and lowers
operating cost by lessening training, maintenance and spares inventory. The need to standardize is
exacerbated for SNS, where different components and subsystems are being built at different laboratories.
Although each laboratory might itself standardize, maximum benefit will be derived for SNS if variety is
reduced across the entire project. This will be a difficult exercise, because each laboratory has its own
experience and culture. Compromise must be the order of the day if project-wide agreement is to be
attained. At the same time, an approach to standardization more rigid than appropriate, necessary or
acceptable will be counterproductive. This document tries to strike the right balance.

Standards need to be agreed in four broad areas – system architecture, software tools, interface
hardware and development process. In the system area, a standard architecture must be adopted. This
includes client-side processor and operating system, and server-side processor, processor bus, and real-time
kernel. These choices are tightly coupled. Moreover, rapidly changing technology makes the choice of an
appropriate architecture for the year 2005 particularly difficult. The options are discussed in Section I. The
recommendation is to “play with” a specific subset, but defer a final decision until shortly before quantity
purchases are required.

The choice of the EPICS toolkit as the basis for the SNS control system software goes a long way
towards imposing a standard. However EPICS runs on many platforms (that is both the good news and the
bad news) and offers a wide variety of mutually exclusive tools for development and operation. This
document discusses some software tools that could be adopted for SNS, and recommends a particular suite
of these tools. In some cases it is deemed not essential to make a decision at this stage of the project, and
the recommendation is simply to follow developments within the EPICS community, and make a decision
based upon stated requirements at the appropriate time. The following issues are discussed in Section 2:

• Database development tools
• Display Editor
• Display driver
• Archiver
• Alarm Handler

Standardization of control system architecture and software tools requires the agreement of the
controls groups at the participating labs. Standardization of interface hardware requires the agreement of
many more players, in particular the diverse and geographically scattered engineering groups who are
designing the various systems which will be interfaced to the control system. Consensus here can be
expected to be much harder. The following topics are discussed in Section 3:

• PLCs
- Choice of PLC
- Interface method
- Programming methods and tools
- Local Display philosophy

• Use of Fieldbuses
• Power Supply Interfaces
• Vacuum Equipment Interfaces
• Racks – power, cooling, grounding
• PLDs

Finally, to insure a consistent program development approach and documentation level, it is
important to define a process for software, hardware and subsystem development, including appropriate
documentation and reviews as well as a consistent development environment to be applied at all the
participating laboratories. These issues are discussed in Section 4 under the following headings:

• Application Development Environment
• Software Development Process and Documentation
• Use of a Relational Database

Intro to software section
Database

Need for an administrator NOW
Application Development Environment
Development Tools
Colour, symbol rules etc

Intro to hardware section
Comment on what needs to be standardized and what does not.
PLCs
Fieldbuses
Crates
Processsors
Controllers

Intro to development environment
What it is
What it includes
How the DB fits in
Requirements
Need to change at a later date (for operations)
Distributed CVS
File structure (drawings)
Procedures
Responsibilities

Software Development Procedures (per IOC or subsystem as appropriate)
Documentation for each IOC

Channel list
Modules
Engineering screens
Cabling

Interlocks to and from other systems
Sequences
Later the database in some visual form
Reviews

Requirements
Preliminary Design

Operator manual

Control Room Configuration
All this depends upon operational philosophy

How many seats?
Choice between few seats on tables (BESSY, APS) or traditional consoles
Knobs
Security issues, firewall
Log-in permissions (one operator log in)

Printers
Analog signals – how many, how displayed
Relationship to other activities

Software development
Hardware lab
Controls offices
Computer (server) room

