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1. Introduction
In the laser wire technique for beam profile measurements, a collimated laser beam
intercepts the H- beam, neutralizing a small fraction of the ions. Changes in the properties
of the ion beam provide information about the ion density in the portion of the beam that
interacts with the laser light. If the laser beam is small enough, then it can be used to
“sample” the ion beam, thus providing profile information. Resolution increases as the
size of the laser beam is decreased, although a beam that is too small will neutralize too
few ions to detect. A compromise between resolution and signal to noise yields an
optimal size for the laser beam of approximately 25% of the size of the ion beam[1].

One of the more serious limitations in the trial at Brookhaven is the poor signal-to-
noise ratio. One way to improve the signal, of course, is to increase the number of
photons interacting with the ion beam. As long as the ion beam is not depleted, a greater
number of photons equates to a larger signal. As the laser power is increased, however,
care must be taken to avoid damage to the optics. This is especially important for optical
windows on the vacuum chamber, since a catastrophic failure of the window could spread
catastrophe throughout the system. Two methods for dealing with this problem are
presented below. In Section 2, we study the effect of changing the pulse duration.
Although the amount of energy that an optic can safely transmit grows as the pulse
increases in duration, we find (somewhat surprisingly) that shorter pulses provide more
optical energy for the interaction with the ion pulses. In Section 3, we investigate the
possibility of minimizing laser damage by moving the windows farther from the
interaction region.

2. Effects of Pulse Duration
Theoretical studies of optical damage in dielectric materials predict that the damage
threshold fluence (energy per unit area) should vary as the square root of the pulse
duration L [2]:

Edamage = L . (1)

Thus, if the pulse energy is near the damage threshold for a particular pulse duration, then
it is safe to double the energy only if the pulse duration is increased by a factor of four
(for a constant beam size). This scaling has been found to be in fairly good agreement
with experimental results down to pulse durations of 10-20 ps[3]. For shorter pulses, the
observed damage fluence is generally higher than would be predicted by this rule, so the
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L  scaling represents a “safe” limit.

From this relationship, it would seem that longer pulses provide a means of safely
increasing the optical energy in the laser wire technique. Because the ion pulses are only
20 ps long, however, the total pulse energy is not the quantity of interest. Rather, it is the



amount of optical energy delivered in that 20-ps time window that is important. [Here, we
consider the neutralization fraction in a single ion pulse, since this would determine, say,
the notch depth observed on an oscilloscope screen. While it is true that laser pulses
overlapping several ion pulses may provide more total energy for the interactions, the
observed effect still depends on the amount of energy that can be deposited in a single ion
pulse.] For optical pulses longer than the ion pulse duration I , the amount of optical
energy available for the interaction is approximately

Eint = EL
I

L

, (2)

where EL  is the energy in the laser pulse. That is, only a fraction of the optical energy is
available—the longer the pulse, the smaller the fraction. For a 200-mJ, 8-ns optical pulse,
for example, only 0.5 mJ is available for a 20-ps ion pulse.

It is useful at this point to calculate the maximum amount of optical energy available
for the interaction as permitted by the damage threshold of the windows. If the pulse
energy reaches the damage threshold energy, then the energy in the ion pulse time
window becomes

Eint( )
max

= I

L

. (3)

Although the damage threshold decreases for shorter pulses, it is actually possible to
provide more energy for the interaction since a greater fraction of the pulse energy arrives
within the ion pulse window.

Consider the following example: CVI offers laser windows with a damage threshold
of 10 J/cm2 for a pulse duration of 8 ns. If we assume a spot size of 0.004 cm2 at the
window, then we have = 14 .14  mJ ns . The following table shows the maximum
permitted pulse energies and the maximum amount of energy in a 20-ps time window for
various pulse durations.

Pulse 
Duration

Maximum Pulse 
Energy (mJ)

Maximum Energy 
in 20 ps (mJ)

20 ps 2.00 2.00
50 ps 3.16 1.26
100ps 4.47 0.894
200 ps 6.32 0.632
500 ps 10.0 0.400

1 ns 14.1 0.283
2 ns 20.0 0.200
5 ns 31.6 0.126

10 ns 44.7 0.0894

The values in this table are particular to this example. Different glasses will have
different damage thresholds (although this figure will not vary significantly from glass to
glass).



3. Effects of Window Position
In addition to the effects of pulse duration discussed above, the amount of energy that can
pass through a window safely depends critically upon the spot size: a spot that is twice as
large may carry twice as much energy. One way to increase the spot size at the windows
is to move them farther from the point of focus. When light is confined to a limited
spatial region, it diffracts as it propagates: the greater the confinement, i.e., the smaller
the beam at its focus, the greater the diffraction. A laser beam with a Gaussian transverse
profile propagates in free space with an intensity described in cylindrical coordinates
by[4]
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where z is the direction of propagation and r is the distance from the axis of propagation.
The 1/e width of the field reaches a minimum value of 0w  at the beam waist which, for

the sake of convenience, is located at z=0. The size of the beam increases with distance
from the waist according to the formula
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This function is plotted in Fig. 1 for w0 = 0.25 mm (beam diameter is 0.5 mm at the
center of the ion beam). Unfortunately, the spot size at the focus is large enough that the
spreading is not significant. Even at a distance of 25 cm from the ion beam, the laser
beam diameter is still less than 1 mm. The situation may be improved by adopting a
tighter focus. This will increase the spot size at the windows, but may reduce the
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Fig. 1. Gaussian beam propagation.



resolution of the measurement.
An alternate solution has been adopted by the Brookhaven group, where cylindrical

optics have been employed to spread the beam in the direction parallel to the ion beam.
This works quite well for longer pulses, but timing of the different portions of the laser
pulse become important when the pulse duration is closer to the ion pulse duration.

4. Summary
In order to ensure that the energetic pulses employed in the laser wire do not cause
damage to the vacuum chamber windows, it may be necessary to modify the spatial
and/or temporal profiles of the laser pulse. Self-diffraction of the laser beam results in an
increasing spot size as the distance from the focus is increased. For the proposed laser
beam parameters, this results in only a modest increase in spot size for reasonable
window positions. It is possible, however, to increase the spot size in the dimension
parallel to the ion beam. For all but the shortest pulses, this technique brings no penalty in
signal or resolution.

The analysis of the effect of the pulse duration brought about the result that more
energy can be brought to the ion pulse when the optical pulse is short. It seems then, that
whatever the geometric scheme, shorter pulses offer an even greater “cushion” against
laser damage.
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