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Abstract

 This is a note on the processing of the signals from PSR strip line BPM that
obtained in experiments on e-p instability. Method of calculation of beam centroid
displacement from the pickup signals is presented. Two-dimensional Fourier
transformation of the signals in presence of the fast instability is analyzed.

I. Introduction
Precise measurement of beam centroid movement is very important for

understanding the instability in the Proton Storage Ring (PSR). Fast strip line BPM
(WM41 or CERN BPM) can provide this information if proper processing algorithm is
used. In the previous work on this subject [1] vertical difference signal obtained by
analog subtraction of signal from top and bottom strip lines of BPM was analyzed.

 In this work we analyze signals from top and bottom strip lines digitized
separately and make further processing in digital form to eliminate errors in frequency
dependent analog hybrid.  Strip line frequency response is approximated to second order
that improves accuracy considerably. Suggested algorithm allows to obtain a snap-shot of
transverse beam position on each turn, than beam centroid movement on successive turns
can be developed in series of plane travelling waves in beam frame of reference thus
providing very important information on instability development.

II. Coordinate reconstruction

Voltage induced on strip line by moving charge can be expressed in terms of
scalar product of charge velocity and static electric field of strip with unit potential.
Therefore beam moving with small angle along strip will excite it on the edges and net
voltage across upstream port is [2]:
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where )(tI  is beam current, )(xF  is function depending on strip line geometry , )(tx  is
distance from beam centroid to strip line, τ  is signal delay in strip line.

This expression is well applicable to signal excited by proton beam in PSR but not
to that excited by transversely moving electrons if they exist. We will discuss possible
contribution from electrons elsewhere but neglect it in further consideration here.

Rewrite (1) in general form:
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 develop in series second term
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 substituting (3) to (2) we have
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 integrate both sides
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 and obtain expression for )(tU
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 if we neglect all terms but first in RHS we obtain first order approximation used in [1].

∫= ,)(
1

)( dttutU
τ

                                                                    (7)

 Small parameter here is ωτ  where w is harmonic frequency. CERN BPM has
τ =1.125ns and observed instability has typical frequency ω ≈2π⋅100MHz, so ≈ωτ .7 is
not very small and first approximation is insufficient. We can improve accuracy to next
order by deriving )(tU ′  from (4)
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and substituting it to (6) we obtain second order approximation for )(tU
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Note that by differentiating (4) and substituting )(nU to (6) we can increase step by step
an order of approximation. In this case derivatives of measured signal )(tu will appear in
RHS of (9), but digital differentiation of signal in presence of noise gives large error



therefore increasing of order of approximation higher than two doesn’t improve real
accuracy.

For illustration lets assume )sin()( ttU ω= , in this case difference between exact
value )(tU  and one approximated using (7) or (9) can be calculated exactly. Result is
shown in fig1. One can see that first order approximation gives 33% error at instability
frequency while second order approximation accurate to 5%. We used (9) in our further
analysis.

Using (9) we calculate voltage on top and bottom BPM strip lines, tu and bu

respectively. Then beam centroid displacement can be derived from its ratio [3]:
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R ⋅= . Numerical coefficients here are derived from calibration data for

this particular BPM.

Figure 1. Difference between  initial function f=sin(wt) and  function restored
after strip line transformation using 1st and 2nd order approximations.



Due to beam movement along orbit data acquired by one BPM at fixed point do
not represent centroid position of all points of the beam in one moment of time. Let
x0(t,s) be beam centroid transverse position in beam frame of reference, where s is
coordinate along orbit varying from 0 to orbit circumference 2πR. Then BPM will
measure in laboratory frame of reference transverse position x=x0(t + s/v, s), where v is
beam velocity.  We can write for Fourier transformation of x:
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then we can derive X0(w) 
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and restore beam transverse position in beam frame performing inverse Fourier
transformation
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The algorithm described above are implemented in MATLAB script. Result of
BPM data processing for one turn is shown in fig.2. Blue line represents snapshot of
beam centroid displasement on one turn, red line is the sum of top and bottom strip lines
proportional to beam current.

Figure 2. Beam displacements during one turn (blue line). Red curve is beam
current profile.



In Figure 3 the amplitude of transversal oscillations of selected part of the beam
versus number of turns is shown. The dashed straight line corresponds to the average
growth of amplitude. The calculated increment of this instability is equal to 182 turns in
this case.

III. Instability signatures as seen after 2D FFT transformation of the processed
signals

      After the extraction of the beam centroid offsets for each turn we form a two-
dimensional matrices of numbers. This matrix has N columns and M rows where N is
number of digitized points in each turn, M is number of turns to be processed (N=357,
M=64 in further examples).  Any single row represents centroid displacement data on one
turn.  BPM readings have large error on the edges of the beam, where current is small.
Therefore we use a window (Hanning or square) for every row to select only data with
the beam intensities not less than 10 % of its maximum. Rigorously speaking, we nullify
the centroid coordinates in the gap to keep only informative part of the signal.
 Every described above matrix corresponds to 64 beam turns. To see spatial
harmonics and their frequencies we performed the 2D Fast Fourier Transformations with
each matrix (in other words we develop beam centroid displacement in series of plane
travelling waves in beam frame of reference).

Figure 3. Amplitude of transverse oscillations versus number of turns.



      The result of experimental signal processing with the instability present is shown in
fig.4,5. Contour plot of sum signal proportional to beam current in coordinates (τ, turns)
where τ=s/2πR is normalized distance along one turn is shown in fig.4.

Fig 5. is a contour plot of harmonic amplitude. The peak heights increase from
blue color to the green, yellow, and the red, which corresponds to the maximum of peak
height. The horizontal axis is the frequency, expressed in terms of the revolution one. The
vertical axis is the spatial harmonic number that is the circumference of the PSR, divided
by the wavelength of harmonic oscillation. It’s worth to note that only harmonics with
opposite signs of ω and κ are present, which is well known feature of two-stream
instability. The instability increments are larger than 64 turns, so we can see its
developing by analyzing a sequence of the adjacent arrays of 64 turns. In fig.6
development of instability is shown (only upper left quarter of full spectrum is plotted).

In fig.6 one can see the development of the instability. Each subplot has the time
difference of 100 turns with the previous one, with the a) subplot starting at 2400 turns
from the beginning of the injection. The peaks with coordinates (0.18, k) correspond to
the vertical betatron frequency. According to the “electron” explanation of this
instability, the unstable harmonics should have harmonic number close to the ratio of the
electron oscillation frequency with the revolution frequency and they should have
frequency around the betatron one. That what we see at all pictures of this plot. As only

Figure 4. Contour plot of beam charge distribution in beam frame of reference in
space-turns coordinates.



oscillations with betatron frequency are observed we can fix this number and to see how
space harmonics number changes with time when instability develops. Result is shown
on fig.7 as spectrogram of harmonic amplitude in coordinates (turns, kz). Spectrum for
one turn is shown in fig.8.One can see some very interesting features of the instability:

1) Spectrum of space harmonics is discrete with ∆kz ≈ 5. Note that this number is
half of PSR periodicity.

2) Space wave number kz decreases with number of turns linearly. It means that
unstable harmonic can not be described by plane wave with constant frequency and wave
number as in the case of coasting beam.

IV. Conclusion.

We have presented a method of PSR fast BPM signal processing which allow to
restore beam centroid transverse movement in time domain with high accuracy. It
provides a powerful tool for PSR instability study. Some new results of beam movement
analysis are presented.
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Figure 5. 2D Fourier spectrum of transverse beam oscillations.



Figure 7. Space harmonics spectrogram of transverse beam
oscillations.

Figure 8. Space harmonics spectrum for one turn.
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Figure 6. Contour plots of 2D Fourier transformation of beam transverse oscillations for
successive arrays of 64 turns.


