
Accelerator Physics Group SNS, ORNL

SNS Ring/RTBT Fault Study
Progress

J. A. Holmes, S. Henderson, S. Danilov, S. Cousineau,
J. Galambos - ORNL

D. Raparia, D. Davino, A. Fedotov, Y. Lee, J. Wei -
BNL

AP Video, April 2, 2002



Accelerator Physics Group SNS, ORNL2

Ring Fault Study

• A study is being conducted to determine the impact of potential
errors and faults in the ring and RTBT on losses and on the
beam-on-target distribution:

– “Normal” losses - alignment and magnet errors, fringe fields,
space charge and impedances.

– “Failures” - injection, extraction, or beam-in-gap kicker failures.

• The strategy is to conduct numerical studies using the codes
MAD, ORBIT, UAL, TRANSPORT, PARMILA as appropriate.

– These codes have complementary capabilities and domains.
– This presentation contains initial ring studies using MAD and

ORBIT.
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Ring Fault Study - MAD and ORBIT

• ORBIT calculations:
– Inject 1000 particles/turn (105200 particles at completion).

– Do the full injection cycle with a “standard” correlated painting scheme
and operating point (Qx = 6.23, Qy = 6.20).

– Include all ring apertures and collimators as perfect absorbers, with the
exception of the scrapers which, as the limiting apertures, are treated
using the full collimation model.

– Include space charge (assuming 2.0*1014 protons) and linear magnetic
focusing fields.

– So far, ignore higher order (nonlinear) magnet fields and impedance
effects.

• Base assumptions:
– To achieve good efficiency in collimation studies, scrapers are placed at

200-pi mm/mr.

– To avoid large tune depression, “standard” scheme paints broad beam,
resulting in ~1% of beam outside 200-pi mm/mr.
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Ring Fault Study - MAD and ORBIT
Results to Date

• Base Case:
– About 1% beam loss (1003 particles), all but 1 particle to ring collimators.

• Quadrupole Strength Errors (unrealistically severe assumptions):
– Absolute integrated error 0.002 m-1 with Gaussian distribution applied to all quads.

Yields >20% beta-beating.
– Less than 2% beam loss (1803 particles), all but 6 particles to collimators.

• Dipole Strength Errors:
– Absolute integrated error 0.00002 with Gaussian distribution applied to all dipoles.

Yields maximum 0.8 mm closed orbit deviation.
– About 1% beam loss (988 particles), all but 3 particles to ring collimators.

• Total Injection Kicker Failure (no injection bump):
– Inject “smoke rings” in each transverse phase plane.
– Nearly 70% beam loss (69071 particles), all but 116 particles to collimators.

• Inject Smaller Beam (4 mm bump adjustment in both planes):
– No beam loss, but “early” space charge broadening  in vertical plane.
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Ring Loss Distributions for Standard Painting
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Emittance Profiles of Surviving Particles
Following Injection
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Small Injection Profile is Narrower, but Onset
of Coherent Space Charge Occurs
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Onset of Coherent Space Charge Resonance
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Conclusions

• A study to determine the impact of potential errors and faults in the ring and
RTBT on losses and on the beam-on-target distribution has been initiated.

• The recommended scraper and painting settings lead to 1% beam loss to
collimators during painting.

• Likely dipole and quadrupole strength errors do not affect losses during painting
significantly.

• Simultaneous failure of all injection kickers would lead to catastrophic losses.

• Injecting a smaller beam appears reduces losses under the assumptions used
here, although the coherent space charge resonance is a potential problem.

• Much work remains to be done: various dynamic failures, impedance effects,
higher order effects.


