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Phenomenon:
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resistance at critical
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Superconductivity - type ||

Abrikosov predicted

the existence of a
“mixed” phase where

lines of flux penetrate i
the material above H,; = Lattice
Type-II Her
Quantized vortices - i
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2.07x107 Gauss-cm?



A single flux line

London penetration depth * Magnetic field modulation

e Normal core
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Vortices repel each other - repulsion causes
them to form arrays to maximize the distance
between the vortices
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u> Bragg Scattering
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Incident Diffracted
plane wave plane wave
o i For periodic arrays
\ e I of nuclel, coherent
P/ scattering is

reinforced only Iin
specific directions
corresponding to the
Bragg condition:
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How to measure this...

At a field of 1Tesla, vortices are roughly 450A apart

d? = @y/B since each flux line carries one quantum of flux
dy Is the flux quantum
B is the applied field
d=lattice spacing (square arrangement)

Bragg’s law 2d Sin 6 = A
(6 = Bragg angle; A=neutron wavelength)

Bragg scattering observed at small angles - SANS!

PS Neutrons can see magnetic contrast



SANS Instrument schematic
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Field parallel to neutrons
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Observed flux lattice with B (=2T)
parallel to 110 in V,;Si

l Sum over rocking curve

angle ——

Long flux lines => no width to the bragg spot in q,



Why do square flux lattices exist?

he lattice symmetry can change as a

function of field (and hence distance
between vortices)




V3Si: B//001 =
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complicated...
Wil i
110 -
The square lattice at low
+ — temperature transforms to a
triangular lattice as the
+ sample is warmed at constant
s field.
110 _
+%= 170 2nd order spots have 1/5 the
iIntensity as the 1st order
However, the existence of 2nd order (11) square spots H
clearly differentitates between hexagonal and square (Sq uare Iattl Ce)

contributions to the intensity. Further, the g-value of
the square and hex Bragg spots are different by 7%



In LuBI,B,C, a possible broadening was observed -
Eskildsen et. al, PRL 86, 5148 (2001)
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Phase Diagram with B//001
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Conclusions

SANS is the best way to study bulk properties of a vortex
lattice — uSR; STM, decoration surface probes

Flux Lattice Symmetry always reflects underlying lattice
symmetry

Mass Anisotropy
— Temperature-independent
— Field-independent

Fermi Surface Anisotropy
Temperature-dependent
Field-dependent



Domain Population [A.U.]

Field and Temperature Dependence
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The opening angle departs from 60° as the field is increased
till the lattice transforms to one with square symmetry. The
region of coexistence and lack of any continuous structural

evolution suggests a first order transition.
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Nonlocal case: equal field

Londarj contours are not circular
penetration around the core of the flux line
depth

Nonlocality: Effects of the
finite spatial extent of a Cooper
pair & (coherence length)
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Coherence length and
Penetration depth diverge as
2E temperature approaches T,

coherence
length
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