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Welding is one of the complex thermomechanical
process that is dynamic in nature and often difficult to
predict due to poor understanding of mechanisms.

weld 13 wides data 1028_273 brop

Liquid-solid interface during welding  Magnetic pulse welding of tubular

 The wide range of processes lead to interaction between different
physical process. How can we predict these interactions?
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Integrated modeling framework is based on considering
the interactions between different physical processes.

Welding conditions | | Material properties | | Geometry | Inputs

Heat Transfer

Models

Mechanics Fluid Flow

Metallurgy

Weldment properties including weld bead shape, Outputs
residual stresses, distortion, microstructure, etc. ]
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The modeling results are very sensitive to thermo-
physical-chemical-mechanical properties.
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Using in-situ diffraction tools we can address this
Important need.
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* For example, using in-situ synchrotron X-ray diffraction technique phase
selection during weld solidification was monitored at a time resolution of 0.05 s!
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In the last decade extensive work has been performed
using in-situ synchrotron- and neutron scattering tools.

(General Materials Diffractometer

« Thereis aneed to continue these studies under controlled
conditions; e.g. thermal, stress, magnetic field and environment
conditions.
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Performance of nickel base superalloys is related to the
presence of y' precipitates in y matrix.

« Composition, morphology and lattice misfit of these precipitates are
crucial parameters.

» Question: How does different thermo-mechanical processing affect
these parameters?
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Case Study 1: How does initial microstructure affect the
lattice misfit between the y and y' phases during heat
treatment?

* Polycrystalline CM247CC alloy:

— Ni- 8Cr - 9Co - 5.5Al - 0.8Ti - 0.1Nb - 0.6Mo - 3.2Ta -
9.5W - 0.08C wt. %

e Lattice misfit was studied as a function of isothermal
holding time at 1000°C.

e Condition 1: Solutionized at 1290°C for 5 minutes and
water quenched & heated to 1000°C and held
Isothermally (Nonequilibrium microstructure).

e Condition 2: Heated to 1190°C, cooled to 1000°C at the
rate of 0.018°Cst. (Equilibrium microstructure).
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Heat treatments were conduced in-situ in GEM (ISIS)
iInstrument while measuring diffraction data.

 Diffraction spectra were
collected at 1-minute
Intervals using three
banks of detectors
placed nominally at
63.6°, 91.3° and 154.4°
In 20.

e Quality of these
diffraction spectra
allowed for whole
pattern analyses using
the GSAS program.
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Nonequilibrium Microstructure: Lattice misfit continues
to change for extended period of time after reaching the

1200 — —2.0
1000 —
— 1.5
;c__:.“ 800 —
e
=
o (00— — 1.0
ik}
o
5
— 400+
— 0.5
200 - — Temperature
4 Lattice Mismatch
O (110} Intensity
0— | | | | | | | L5 0.0
0 2 4 ] g 10 12 14 16x10

(me) Aysuaqul Head il 1) A

Isothermal transformation temperature.

— 1000

— 800

— 600

— 400

— 200

L23E LUSIA 20mET

 How about equilibrium microstructure?
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Equilibrium Microstructure: Lattice misfit changes
stabilizes quickly after reaching isothermal
transformation temperature.
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« Implication: Lattice mismatch or the properties of these

alloys are

path dependent.
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Case Study 2: How does stress affect the phase
transformation and lattice-strains in the y’ precipitate?

« PWA1480 Single Crystal Superalloy
— Ni-11.0Al-11.5Cr-1.9Ti-5.1C0-4.0Ta-1.3W (at.%)

e Heated 1473 K at a rate of 2.7 Ks'1 and cooled at the
same rate to room temperature.

* One of the samples was loaded to ~ 100 MPa of tensile
stress before cooling to room at high temperature.

 The TOF positions and intensity of diffraction peaks of

both y' [{001}, {002}, and {004}] and y [{002} and {004}]
phases were measured in situ at a time resolution of 3
minutes.
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Thermomechanical simulations were performed in-situ

with SMARTS instrument while measuring diffraction at
two different detectors.
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Diffraction data from y' precipitate with small (20MPa)
external tensile load shows only dissolution and growth
of ¥y during heating and cooling.
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Experiment with 100 MPa tensile load shows dissolution
and growth of y’ during heating and cooling and
differences in the +90 and -90 detector data.
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ratio effect?
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Ratio of lattice strains while cooling with 100 MPa load
shows nonlinear behavior.
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Implications: The lattice parameter of yY may change due
to local changes in the y channel compositions driven by
applied load — Constraint effect.
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 Further work Is necessary to evaluate this effect.
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Challenges from a materials science point of view.

Can we impose other effects during measurements?

— Magnetic fields: Recent work shows acceleration of austenite to
pearlite transformation.

« Can we track the microstructure? Similar to 4-D SRXRD microscopy?

 How do we decouple the effects of plastic strain and elastic strain and
temperature effects?

 Can we do simultaneous small-angle scattering and diffraction
studies?

 Can we do real-time dynamic stress mapping of during welding?
 How can we increase the temporal resolution to microseconds?

« How can we increase the spatial resolution simultaneously while
increasing the temporal resolution?

« How can we increase the data analysis rates (full peak analysis)?
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Future outlook: Engineering Diffractometer (SNS-
VULCAN) and Newly updated HFIR may allow us to
address these questions.

e http://www.sns.gov/users/
Instrument systems/instr
uments/elastic/vulcan.sht
ml

Operating: 30 Hz!

0.1 mm spatial resolution!
Poor man’s SANS

— 0.01t00.18 A"
Transmission Bragg Edges

— Composition
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http://www.sns.gov/users/instrument_systems/instruments/elastic/vulcan.shtml
http://www.sns.gov/users/instrument_systems/instruments/elastic/vulcan.shtml
http://www.sns.gov/users/instrument_systems/instruments/elastic/vulcan.shtml
http://www.sns.gov/users/instrument_systems/instruments/elastic/vulcan.shtml

A challenge for ourselves: Fundamental understanding
of solid-state welding or joining of advanced materials.

F

h

* | hope by 2015 we will be able to analyze the plastic flow and stress
build up in a dissimilar ODS steel to AI-MMC joint made by Friction
Stir Weld or magnetic pulse welding by combination of Synchrotron
and Neutron Scattering tools!
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Summary and Conclusions

« Measurements of phase transformations as a function of thermo-
mechanical processing are needed to develop better models to
optimize the structural materials performance.

* In-situ neutron and synchrotron scattering tools allows us to
understand the fundamental mechanisms.

* ISIS-GEM instrument allowed us to track lattice misfit in a
polycrystalline nickel base superalloy as a function of temperature and
Initial microstructure.

* LANL-SMARTS instrument allowed us to track lattice strain in single
crystal nickel base superalloy as a function of temperature and load.

« With future developments in SNS-VULCAN and HFIR we will be
perform more detailed analysis of materials during and after
welding/joining.
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