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A Brief Outline

• Goals for the Talk
• Overview of the PEP-II RF System
• Purpose of RF systems
• A walk down memory lane
• Ideas and experiments
• A Model comes to the rescue
• The smoking gun
• Resolution
• Future Directions



Goals

• Review CW RF feedback systems used in 
circulating storage rings

• Highlight some “new” measurement 
techniques

• Pass on some experience so others can 
learn from our journey



The PEP-II LLRF
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Photo Gallery (PEP-II)
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Purpose of RF Systems

• To present minimal fundamental 
impedance to the beam

• Restore energy from synchrotron radiation 
losses

• Provide control over station phase relative 
to the beam

• In Hadron machines, provide final 
acceleration



A WALK DOWN MEMORY LANE

• In 2003 grow/damp measurements were 
performed in an attempt to understand: 
– What the current growth rates were vs. what a 

linear model predicts
– The effective damping rates.

• The grow/damps showed surprisingly high 
growth rates (5 to 10X greater than those 
predicted by a linear model)



Ideas and Experiments

• The likely target for the cause was thought 
to be reduced impedance control due to 
klystron saturation.

• Sandro Gallo (LNF-INFN) came up with 
the idea of a klystron linearizer.

• At the same time, a non-linear modeling 
effort was resurrected.



• Klystron Linearizer Idea

Ideas and Experiments

As usual, things start with simple ideas
…and end up being much more complicated.



Ideas and Experiments
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Linearizer showed 
no real improvement 
when carefully 
compared to similar 
station operating 
conditions (same 
direct and comb 
gain setpoints)

Transfer functions 
looked better, but 
power supply ripple 
did not.  Although the linearizer worked well as an 

amplitude linearizer, it did not address the 
main reason that we built it (high growth 
rates).  It was also VERY tweaky to 
operate and liked to throw the klystron 
over the top





Ideas and Experiments

• At the same time as the linearizer 
development was going on, we had 
started a full blown non-linear model 
development effort.  

• Claudio Rivetta was the lead on this effort 
and the initial results are well documented 
in the PRST paper:

• http://prst-ab.aps.org/pdf/PRSTAB/v10/i2/e022801



Ideas and Experiments

• As part of the non-linear model 
development, we measured the frequency 
response of our modulator/pre- 
amp/Klystron Path using our built-in 
“network analyzer” capabilities



Ideas and Experiments
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Ideas and Experiments
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May 2006 - Measurements
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All Drive Amps
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Ideas and Experiments
• What the heck?  What were these weird responses we were seeing? 

Especially in LR4-2.  
• We began to devise complicated schemes that could measure the Klystrons 

(we were still thinking Klystrons at this point) to see if we could replicate 
these results in the test stand (stand alone Klystron).  

• We had lots of exotic ideas involving mixers and modulators swept with 
network analyzers and then complicated detection schemes to demodulate 
the resultant signal…

• At one of the conferences (EPAC ’06) John Fox had a discussion with 
Philippe Baudrenghien about what we were seeing with these 
measurements of amplifiers and he (Philippe) suggested a technique that 
none of us had thought of…namely: Sweep the network analyzer below the 
carrier.

• But first…why are we measuring things this way?  Why not just sweep with 
a network analyzer?



Ideas and Experiments
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Klystron output 
signal in our system 
is a large CW carrier 
with small 
modulations around 
it mostly at the 
revolution harmonics 
(-50 dB)

Out “built in” network 
analyzer does a 
similar thing.  It 
modulates the carrier 
with a noise like 
signal in I&Q and 
then demodulates it.



Test Stand Measurements

•The test stand allows 
us to make non-beam 
invasive measurements.



Small/Large Signal
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Small/Large Signal
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Care must be taken to 
ensure you don’t 
overload the input of the 
network (or spectrum) 
analyzer.  

This is usually done by 
setting a fairly high input 
attenuation.



Small/Large Signal

Sweeps of all the pre- 
amplifiers in the LER in 
this fashion show similar 
results to what was 
obtained with the 
Klystron included.
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A Model Comes to the Rescue

• Now we finally had all the clues to the 
puzzle…
– When Claudio put this response into his 

model, we started to see the increased growth 
rates that we expected

– You heard a whole talk on this subject 
yesterday so I won’t re-iterate here.

• We then set about finding some new 
amplifiers and developing on other “new” 
measurement technique.



Small/Large Signal
Non-linear distortion is also a key parameter of these amplifiers.  Rather than 
use two large tones as is typically done in a TOI measurement, we decided to 
try a new technique similar to our network analyzer technique.  Namely, a 
small signal in the presence of a large signal.  We got some surprising results.



Small/Large Signal



Small/Large Singal
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Small/Large Signal
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In this case, 
AmpC was a 
class A amplifier 
powered off 
220V AC.

Amp B was a 
class AB 
amplifier 
powered of 
120V.

We chose amp 
B based upon 
“good enough” 
performance 
and much less 
expensive price



The round about way to a solution
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Resolution

• In the End, we bought 17 new amplifiers  
(1 for each station and 2 spares)

• The effective growth rates have been 
reduced (See Claudio Rivetta’s talk)

• This path led us to various new insights 
into how to configure the system for 
maximum performance
– Comb rotation
– Gain and phase margin trade off vs. beam 

stability



Future Directions

• PEP-II will continue to run until October 
‘08.  Aggressive current increase plans will 
demand constant vigilance on the part of 
the RF team

• We are planning on collaboration with the 
LHC commissioning since the LLRF 
systems share many commonalities
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