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Synopsis 

Two-dimensional spin echo small-angle neutron scattering experiments are proposed for the 

direct measurement of the vector-length distribution function. Interpretation of the correlation 

function from one-dimensional experiments is also presented. 

Abstract 

Two-dimensional spin echo small-angle neutron-scattering experiments that measure the 

vector-length distribution function, or pair-distance distribution function, in real space are 

discussed. The proposed diffractometer uses two cylindrically symmetric magnetic fields with 

conically shaped front and end faces to enable experiments in two dimensions. It also features 

a π/2 neutron spin flipper to make the effective analyzing direction of the analyzer 

perpendicular to the polarizing direction of the polarizer. The theoretical aspect of one-

dimensional spin echo small-angle neutron-scattering experiments is also explored. The 

relationship between the correlation function from one-dimensional experiments and the 

vector-length distribution function is established, and interpretation of this correlation 

function in real space is presented. 

1. Introduction 

Spin echo small-angle neutron-scattering (SESANS) experiments, like the traditional spin 

echo method (Mezei 1972), detect changes in neutron polarization after neutrons have passed 

through two Larmor precession devices with opposing magnetic fields before and after the 

sample. In the absence of the sample, the opposite precessions of the polarization vector in the 

two fields cancel each other and the neutron polarization remains unchanged. In inelastic 

experiments, energy transfers between neutrons and the scattering sample cause the neutrons 

to change their speeds and hence their travel times within the second Larmor field. The net 

Larmor precession angle is reflected in changes of neutron polarization and is analyzed 
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through a polarization analyzer. In SESANS experiments, variations in neutron path lengths 

within the second precession field originated from sample scattering cause this net precession 

angle. The magnetic fields are designed with inclined entrance and exit faces (Keller et al. 

1995, Rekveldt 1996) such that to the first order, the neutron path length within the Larmor 

device is a linear function of the scattering angle. With the development of the neutron 

resonance spin echo technique (Golub & Gähler 1987), it became feasible to construct Larmor 

precession devices with such inclined faces. The neutron resonance spin echo experiment uses 

a pair of spatially separated resonance spin flippers to replace the traditional magnetic field. 

For small-angle applications, the flippers are placed into the neutron beam at an angle, 

satisfying the inclination requirement (Keller et al. 1995). Many of the progresses in SESANS 

development have been achieved only recently. (Rekveldt 1996, 1998, 1999, & 2000; 

Bouwman et al. 1999 & 2000; Bouwman & Rekveldt 2000; van Oossanen et al. 2000; and 

Uca et al. 2000). 

In a conventional small-angle neutron-scattering (SANS) experiment, the scattering intensity I 

is measured as a function of neutron momentum transfer Q. These I(Q)-Q data are then 

typically transformed into real space to obtain the so-called vector-length distribution function 

p(r), also called the pair-distance distribution function. A SESANS experiment, on the other 

hand, measures a correlation function in real space. Parallel to an inelastic spin echo 

experiment, where the detected time correlation function is the Fourier transform of the 

energy transfer spectrum, SESANS measures a correlation function that is the Fourier 

transform of the I(Q)-Q spectrum. Rekveldt defined the following correlation function  

∫ ⋅= QrQQ 2)cos()(2)( dSrG
π

    (1) 

for the experimental setup described in (Rekveldt 1996). The 2/π factor is added here for 

definition consistency within the current study. G(r) is obtained directly from analyzing the 

neutron polarization or the neutron intensity after the analyzer. In this Fourier integration, the 

scattering vector Q is defined individually for each scattered neutron and the incoming 

direction of that particular neutron is the reference vector for determining Q. This is contrary 

to conventional SANS experiments, where the incoming neutron beam direction is used to 

define the Q vector for all scattered neutrons. The immediate implication is that the 

divergence of the neutron beam does not degrade the quality of the scattering data in SESANS 

experiments the way it does in conventional SANS experiments. In simple terms, SESANS is 

divergence independent. This is a key property that enables SESANS to extend its application 

range well into the ultrasmall-angle regime (Rekveldt 1996). Neutron beams with relatively 
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large divergence can thus be used to increase the counting rate. In fact, as is discussed later, 

divergent neutron beams are preferred not only for the increased neutron flux but also for 

increasing the completeness of the scattering data. Nonetheless, it must be pointed out that 

such divergence independence is valid only in the first-order approximation. This is because 

the G(r) function defined in equation (1) is valid to the first order only. Further, it must be 

cautioned that, depending on the instrument geometry, the divergence independence may be 

restricted. In the Rekveldt (1996) setup, for example, such independence is true in one 

direction only, namely along the direction in which scattering data are collected. 

Equation (1) defines a clear relationship between the G(r) function and the scattering cross 

section. What G(r) represents in real space, however, is not obvious. In small-angle scattering 

experiments, the vector-length distribution function p(r) is most commonly used and readily 

interpreted. It is therefore desirable to measure the p(r) function directly from a SESANS 

experiment or to at least be able to interpret the G(r) function in real space. In this paper, 

experimental concepts where the vector-length distribution function p(r) is the directly 

measurable correlation function are proposed. A direct link between the G(r) and p(r) 

functions is also established, and the interpretation of G(r) in real space is presented. 

2. Two-Dimensional SESANS  

2.1 Direct measurement of the vector-length distribution function 

The proposed SESANS setup is shown in Figure 1, with familiar components found in a 

typical spin echo experiment. The two key features that enable direct measurement of the 

vector-length distribution function are the π/2 spin flipper and the cylindrically symmetric 

magnetic fields with conically shaped entrance and exit faces. To facilitate discussions, the 

polarizing direction of the polarizer and the analyzing direction of the analyzer are assumed to 

be along the x direction. In addition, the Larmor fields are assumed to be along the ± z 

directions, and the 90° rotation of the neutron polarization by the flipper Fπ/2 occurs within the 

x-y plane. Further, only the elastic scattering is considered. For strong inelastic scattering 

systems, modified Larmor devices can be used to amplify the elastic contribution and 

suppress the inelastic contribution to the Larmor precession angle (Rekveldt 1996). 

To examine the neutron intensity on the detector, neutron polarization along the pathway is 

followed. Immediately after the polarizer, neutrons have the polarization P0, which is the 

same as the polarizing power of the polarizer. After precessing in the two opposite Larmor 
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fields, the polarization vector for the transmitted neutron beam remains unchanged. Consider 

an incoming neutron along the z axis scattered into the (θ,ψ ) direction, the net precession 

angle of this neutron is (Figure 1a) 

( )θθλϕ 0cotBLc≈∆ ,  with 2-114T10632.4 −×== mhmc NNγ ,  (2) 

in the first-order approximation for the small θ -angle. θ is the scattering angle, and ψ  is the 

azimuthal angle. λ is the neutron wavelength, and L is the length of the Larmor field B 

(Figure 1a). γN and mN are the neutron gyromagnetic ratio and mass, respectively. h is 

Planck’s constant.  

Because of the cylindrical symmetry of the Larmor devices, ∆ϕ does not depend on the 

azimuthal angle ψ . This feature allows data collection in two dimensions, namely in the x-y 

plane. When compared to a one-dimensional SESANS instrument (Rekveldt 1996, see also 

Figure 2), the disadvantage of this two-dimensional setup is that the divergence independence 

is not preserved when the size of the scattering sample is not negligible. In the cross section 

shown in Figure 1a, the above ∆ϕ expression is not valid for those incoming and scattered 

neutrons whose pathways cross the centerline (i.e., the z axis) within either of the two Larmor 

devices. The likelihood that a neutron crosses the centerline increases with the cross section of 

the sample. To ensure the divergence independence, small scattering samples have to be used, 

which can be achieved by placing a pinhole slit just before the sample. Similar situation is 

found in the two alternative Larmor device configurations in Figures (1a) and (1b) and small 

sample slits are needed in both cases. Using small scattering samples implies immediately the 

loss of neutron intensity. To make up for such loss, focusing optics can be used. In principle, 

the use of focusing techniques on a SESANS instrument is less complicated than that on a 

traditional SANS instrument, because the former only needs focusing onto the sample while 

the latter requires focusing onto the detector. 

For neutrons scattered into the (θ, ψ ) direction, the polarization becomes P0cos(∆ϕ). The total 

beam polarization is obtained by summing over all scattered and transmitted neutrons. 

∫ ∆−+=
π

ψθθϕ
σ 4001 sin)cos()(

1
ddS

T
PTPP

T

Q  , 

where S(Q), σT, and T are the coherent differential cross section, total cross section, and 

transmission of the sample, respectively. S(Q)/σT is the probability for a neutron to be 

scattered into a unit solid angle in the (θ, ψ ) direction. For simplicity, the practical limit on the 

scattering angle by an actual instrument is omitted, and 4π− solid angle is used as the 
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boundary. Errors associated with a limited θ -range is discussed in §5. Further, the incoherent 

scattering cross section is not considered.  

For a small θ, the momentum transfer Q = 4πsin(θ/2)/λ ≈ 2πθ/λ. The Larmor angle ∆ϕ can be 

expressed as 

∆ϕ = Qr with 0
2 cot

2
1 θλ
π

BLcr =  .     (3) 

The r parameter has the unit of [m]. Rekveldt (1996) described r as a length parameter of the 

scattering particle. Bouwman et al. (2000) stated further that r is the distance between two 

points or volume elements in the scattering particle. The following discussion provides a 

logical explanation for the r parameter. 

After the Fπ/2 flipper, the transmitted neutrons no longer contribute to the total polarization 

along the x direction. Replace ∆ϕ in P1 with equation (3), and add the 90º-phase shift to it. 

Also, substitute the scattering angle θ as well as sinθ with the momentum transfer Q. The 

neutron polarization after the flipper becomes 

∫∫−= QrdQQrSd
cBL

TPP
T

)sin()(
cot2

1

0
02 Qψ

σθπ
 · 

For isotropic scattering systems, the scattering cross section is a function of the scattering 

angle θ only and does not depend on the azimuthal angle ψ . Cases in which ordering exists in 

the sample and the scattering pattern is asymmetric with regard to the ψ − angle are not 

considered here. The integration over ψ  in the integral is then separated from the rest, yielding 

the factor 2π. 

After the analyzer, the detected neutron intensity on the detector I(B,λ) is expressed as 

[ ] 



 +=+= ∫ QdQrQrQS

kB
IPPIBI A )sin()(2111),( 020 π

λ  ,   (4) 

with 
)1(

cot2

0

0

TPP
cLk

A

T

−
=

π
θσ  , 

where PA is the analyzing power of the analyzer. I0 is the neutron intensity when P2PA = 0 

(e.g., when neutrons are totally depolarized between the polarizer and analyzer). Because of 

the presence of the Fπ/2 flipper, I0 can also be measured with the precession fields ±B set to 

zero. The parameter k is a constant for a given experiment. The intensity I(B,λ) is a function 
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of both the magnetic field and the neutron wavelength, which is evident explicitly, or 

implicitly, through the r parameter [equation (3)]. 

The integral part in equation (4) defines the vector-length distribution function p(r) (Guinier 

& Fournet 1955). 

∫
∞

=
0

))(sin()(2)( dQQrQrQSrp
π

 ·     (5) 

The upper integration limit for the momentum transfer is determined by the wavelength of the 

neutrons and the maximum scattering angle of 180°. For mathematical convenience, infinity is 

commonly used. For scattering particles with uniform scattering length density, p(r) is the 

distribution of the distances r joining two points or volume elements. Thus, the r parameter 

defined in equation (3) is the length of the scattering vector within the scattering particle. The 

reverse transform of equation (5), which will be used in the next section, is listed here as a 

reference. 

∫
∞

=
0

)sin()()( dr
Qr

QrrpQS  ·     (6) 

Infinity is again used as the upper limit for r for mathematical convenience. The true physical 

limit is the maximum linear dimension of the scattering particle. 

Thus, by using a π/2 spin flipper in combination with magnetic fields that have conical front 

and end faces, the vector-length distribution function p(r) is measured directly. Substitution of 

equation (5) into equation (4) yields 







 −= 1

),(
)(

0I
BI

kBrp
λ  ·     (7) 

Measurements at different r values are achieved either by changing the Larmor field B or by 

scanning through a neutron wavelength band. Integral structure parameters of the scattering 

particle, such as the forward scattering intensity and the radius of gyration, are readily 

obtained from the zero and second moments of the p(r) function. 

In addition to making the direct measurement of the p(r) function possible, the use of the Fπ/2 

flipper has an additional benefit of suppressing half of the transmitted neutron beam, which in 

turn means lower background and higher signal-to-noise ratio. 
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2.2 Without the Fπ/2 flipper 

Although the Fπ/2 flipper is an essential component in the proposed instrument, it is interesting 

to look into situations where the flipper is absent. The polarization P2 in equation (4) is now 

replaced with P1. Parallel to discussions in §2.1, the correlation function is defined as 

∫
∞

=Π
0

))(cos()(2)( dQQrQrQSr
π

 ·    (8) 

From the neutron intensity data, Π(r) is obtained through 

( )





 +−=Π APTP

I
BIkBr 0

0

1),()( λ  ·    (9) 

Unlike the p(r) function, the Π(r) function is not readily interpretable in real space. By 

denoting h(r)=Π(r)/r and q(r)=p(r)/r, it is observed that h(r) and q(r) are the real and 

imaginary part of the complex Fourier transform of the function Q·S(Q). In the following 

paragraphs, it is shown that a dispersion relation exists between the h(r) and q(r) functions 

and that a pair of Hilbert transforms links the two functions. Substitution of S(Q) from 

equation (6) into equation (8) yields 

∞

=

∞

∞∞







+′
+′+

−′
−′′

′
′−=

′′
′

′=Π

∫

∫∫

0
0

00

)cos()cos()(1        

)cos()sin()(2)(

Qrr
Qrr

rr
Qrrrd

r
rrp

dQQrrQrd
r
rrpr

π

π
 · 

Because p(r) = 4π r2γ(r), γ(r) is the correlation function in small-angle scattering (Debye & 

Bueche 1949) and is analytic; therefore, the function p(r)/r is also analytic. The contour of 

integration can thus be deformed off the real axis in the complex plane of r′ = u + iv. The 

above integral is rewritten as 

∫

∫

+

−

∞

=

+′−′

∞

=

+′−−′−









+′
+

−′
′

′
′−









+′
+

−′
′

′
′−=Π

C
Q

QrriQrri

C
Q

QrriQrri

rr
e

rr
erd

r
rrp

rr
e

rr
erd

r
rrpr

0

)()(

0

)()(

)(
2
1          

)(
2
1)(

π

π
 · 

The contour C−  is chosen below the real axis (v<0) for the first integral, and the contour C+ is 

chosen above the real axis (v>0) for the second integral. Replacing r′ with u + iv, the 

exponentials are written as QruivQQrri eee )()( ±±±′± = m . Therefore, the choice of the contours 
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guarantees that all the exponentials vanish as Q →  ∞ . Omitting the notion for the contours, the 

previous equation becomes 

∫
∞ ′

−′
′=Π

0 22

)(2)( rd
rr

rprr
π

 ·     (10) 

Similarly, the reverse transform of equation (10) is found by substituting the reverse transform 

of equation (8), 

∫
∞
Π=

0

)cos()()( dr
Qr

QrrQS  , 

into equation (5). With the same procedure, it is found to be 

∫
∞ ′

−′′
′Π−=

0 22

2

)(
)(2)( rd
rrr

rrrp
π

 ·    (11) 

Equations (10) and (11) describe the dispersion relationship between the Π(r) and p(r) 

functions. Both of them have a singular point at r′ = r. Figure 3 plots the p(r) and Π(r) 

functions for a uniform sphere. It is noted that Π(r) goes to negative at large r’s. It is also 

noted that Π(r) is an experimentally measurable quantity. This is not a contradiction because 

Π(r) is obtained by subtracting a constant from the actually measured I(B,λ) data [equation 

(9)]. I(B,λ) is the neutron intensity or neutron counts that cannot be negative. 

3. One-Dimensional SESANS 

3.1 p(r)-measurement in one-dimensional experiments 

When the Larmor precession devices have flat, inclined entrance and exit faces, as described 

in Rekveldt (1996) (see also Figure 2), the equations that have been derived for measurements 

in two dimensions are no longer applicable. This is because the Larmor precession angle ∆φ is 

now a function of the azimuthal angle ψ . Equation (3) is replaced by 

ψϕ cosQr=∆  ·     (12) 

The correlation function defined with this ∆ϕ cannot be readily interpreted in real space. To 

obtain a meaningful correlation function, constraint on the instruments is made. From 

equation (12), it can be seen that if a slit is added between the sample and the detector to limit 

the azimuthal ψ  angle to a small range (-∆ψ /2, ∆ψ /2) such that cosψ → 1, the formalism 
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presented in §2 can be used again. The only modification to the equations is to replace the 

constant k in equations (7) and (9) with k′ = ( ψπ ∆2 )k. 

To maintain a constant ∆ψ  range for all scattering angles θ, the slit has to have the shape of a 

sand clock (Figure 2). Parallel to discussions in §2.1, the size of the sample has to be small for 

cosψ → 1 to be valid for all neutrons scattered off the sample. The loss in neutron counting rate 

on the detector due to small sample can at least be partially compensated by the usage of 

focusing optics. 

3.2 Rectangular slit, no Fπ/2 flipper −  Rekveldt setup 

With a rectangular slit along the x direction (Figure 2), the discussion in §3.1 is no longer 

applicable because the range of the azimuthal angle ∆ψ  is now inversely proportional to the 

scattering angle θ. Assuming the scattering sample has a negligible dimension in the y 

direction, a one-dimensional approximation along the slit direction (i.e., the x direction) can 

be used. Rekveldt (1996) uses supermirrors aligned close to the x-z plane as the analyzer. The 

limited total reflection angle of the mirrors restricts the acceptable Q-range along the y 

direction (∆Qy). In the following discussions, such a Q limitation is approximated as an 

effective narrow slit. Errors associated with a finite ∆Qy value are discussed as well.  

To have the same configuration as in Rekveldt (1996), the π/2 spin flipper is removed from 

the neutron beam path. The importance of the Rekveldt setup is underlined by recent technical 

developments (Bouwman et al. 1999 & 2000). 

In one-dimensional approximation, the correlation function in equation (1) is modified to  

∫
∞

=
0

)cos()(2)( dQQrQSrG
π

 ·    (13)  

The integration is taken along the +x direction only. Integration along –x direction defines the 

same G(r). For reference, the inverse transform of equation (13) is given by 

∫
∞

=
0

)cos()()( drQrrGQS  ·     (14) 

From neutron intensity on the detector I(B,λ), G(r) is obtained through [compare to equation 

(9)] 

( )





 +−

∆
′′= A

y

PTPf
I
BIkrG 02

0

1),()( λ
θλ

 ·    (15) 
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The constant k″ is defined as 
A

T

PPTf
k

01 )1(
2
−

=′′ σ .  f1 and f2 denote the fractions of scattered 

and transmitted neutrons that pass the slit, respectively. ∆θy is the maximum scattering angle 

along the y direction accepted by the slit or the supermirror. The wavelength factor λ comes 

from the substitution of integration over solid angle with integration over Q in G(r) [equation 

(13)]. On steady state neutron sources, where the scanning in r space is commonly achieved 

by changing the magnetic field [equation (3)], both ∆θy and λ remain unchanged. The 

extraction of the G(r) function from the experimental data [equation (15)] is then 

straightforward. On time of flight instruments where wavelength changes, the situation is 

different. With a rectangular slit, the ∆θy value remains unchanged for a given experiment. 

Therefore, only a λ− 1− correction is needed when extracting G(r) from the scattering intensity 

[equation (15)]. With a supermirror analyzer, ∆θy increases linearly with neutron wavelength, 

resulting into a λ− 2− correction. 

Obviously, for equations (13) and (14) to be valid, ∆θy and its corresponding Q-range ∆Qy 

have to be small. Analog to the arguments regarding the minimum experimental Q value and 

the maximum scattering particle size Dmax in traditional SANS experiments (Feigin & 

Svergun 1987), a good limit on ∆Qy would be ∆Qy < π/Dmax. A larger ∆Qy will result in a 

smearing effect which will be discussed in detail elsewhere. In Rekveldt (1996), the total 

reflection angle of the supermirror analyzer is 3 mrad/Å, which corresponds to ∆Qy 

~ 0.02 Å-1, or Dmax ~ 150 Å. To study large particles, better limit on ∆Qy has be imposed, such 

as by using an analyzer slit in front of the analyzer. Such a slit, along with the previous 

assumption that the sample dimension in the y direction is negligible, reduces the neutron 

counting rate on the detector. To increase the counting rate, the Rekveldt setup could be 

modified to use a multi channel supermirror analyzer in combination with a Soller collimator 

(Soller 1924) in front of the analyzer, with each collimator channel defines the maximum ∆Qy 

value. Such a setup will allow the use of large samples (i.e., along the y direction).  

To seek an interpretation of G(r) in real space, a relationship between the G(r) and p(r) 

functions is established. Substitution of S(Q) in equation (13) with equation (6) leads to 

∫

∫∫
∞

∞∞

′
′
′=

′′
′
′=

r
rd

r
rp

dQ
Q

QrrQrd
r
rprG

)(        

)cos()sin()(2)(
00π  ·   (16) 
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The integral over Q in the first step vanishes for r′<r but yields π/4 for r′=r and π/2 for r′>r. 

The second step is obtained by adding an additional (π/4) term for r′=r. The added term is to 

be subtracted, but it vanishes as dr′ tends 0. 

The G(r) function thus corresponds to the total r-1− weighted probability of finding two points 

within the scattering particle separated by a distance of r or larger. Two properties for the G(r) 

function are immediately apparent. 

(a) G(r) vanishes at the maximum linear dimension of the scattering particle Dmax. 

(b) For a scattering particle whose p(r) function is positive for all r-values, G(r) is a 

monotonically decreasing function. 

The first property is an immediate consequence of p(r) ≡ 0 beyond Dmax. The second property 

holds in most scattering experiments. Exceptions are found where the contrast of the 

scattering particle fluctuates below and above zero, which can be found in contrast variation 

experiments. The varying sign of the contrast can produce negative p(r) values for certain 

r regions, reflected as oscillations in the G(r) function. Now, the oscillatory behaviors in G(r) 

presented in Bouwman & Rekveldt (2000) can easily be understood. Figure 4 shows the G(r) 

and p(r) curves for the single shell model used by Bouwman & Rekveldt (2000). The model 

has opposing contrast for the inner cavity and the outer shell, resulting in negative p(r) for r’s 

in the mid-range. The negativity comes from the interatomic vectors linking the shell and the 

cavity. It is reflected in the G(r) function as an upturn at the r values where p(r) goes to 

negative and as a downturn where p(r) becomes positive again. 

The reverse of equation (16) is readily obtained: 

r
dr

rdGrp )()( −=  ·      (17) 

Integral structure parameters of the scattering particle can be calculated either from the 

hereby-obtained vector-length distribution function p(r) or directly from the G(r) function. 

The forward (i.e., at Q=0) scattering intensity I(0) and the radius of gyration Rg are expressed 

in G(r) as  

∫−= )]([ )0( rGdrI  and 
∫
∫=

)]([ 

)]([

2
1

3

2

rGdr

rGdr
Rg  ·   (18) 

I(0) and Rg are thus obtained from the first and third moments of r in G space. 
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3.3 Rectangular slit, with Fπ/2 flipper 

When an Fπ/2 flipper is added to the Rekveldt setup, the correlation function is defined as the 

sine transform of S(Q):  

∫
∞

=Γ
0

)sin()(2)( dQQrQSr
π

 · 

Γ(r) is extracted from the neutron intensity data through 







 −

∆
′′=Γ 1),()(

0I
BIkr

y

λ
θλ

 · 

The situation becomes similar to §2.2 in terms of relating Γ(r) to G(r) since a dispersion 

relation exists between them as well. With the same procedure as in §2.2, the dispersion 

relation is found to be 

∫
∞ ′

−′
′−=Γ

0 22

)(2)( rd
rr

rGrr
π

 ,  and   ∫
∞ ′

−′
′Γ′=

0 22

)(2)( rd
rr
rrrG

π
 · 

Under certain circumstances, measuring Γ(r) could be preferred since the use of the Fπ/2 

flipper suppresses half of the transmitted neutron beam. 

4. Time of flight SESANS 

On a pulsed neutron source, neutrons of different wavelength are selected according to their 

travel times from the source to the detector. This intrinsic property of sweeping through a 

wavelength band means that scanning through the r space [equation (3)] is automatic. A time-

of-flight SESANS instrument thus has a great advantage over instruments on steady-state 

sources. The speed at which neutron wavelength changes on time-of-flight instruments can be 

much higher than that of sweeping through a magnetic field; thus, very rapid experiments 

become possible. With a strong neutron source, such as the Spallation Neutron Source under 

construction at Oak Ridge National Laboratory in the United States, it will be possible to 

collect a whole p(r)-r or G(r)-r data set with good statistics within a single neutron pulse. The 

instrument can be constructed and tuned such that the wavelength spectrum within a single 

frame covers the whole r space. This should become possible since r is a function of 

wavelength squared [equation (3)]. 

On the contrary side, special care must be taken on pulse sources in both designing the 

instrument and conducting an experiment. Since an instrument has fixed dimensional 
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parameters, the Q-range covered by the instrument changes with varying neutron wavelength. 

Potential truncation errors, as are discussed in more detail in the next section, will then vary 

with the neutron wavelength. Also, from technical discussions in the next section, broadband 

neutron polarizers and flippers are necessary on time-of-flight SESANS instruments. 

5. Discussion 

When properly configured and constructed, SESANS experiments can be used to measure the 

correlation functions that are readily interpretable in real space. In two-dimensional SESANS 

experiments (§2.1), the vector-length distribution function p(r) is the direct measurable 

quantity. In one dimension, either the p(r) or the G(r) function is directly extracted from the 

neutron data on the detector depending on the design of the slit (§3). In broad terms, all these 

functions are Fourier transforms of the scattering cross section. Thus, the accuracy of their 

measurements depends not only on the statistical limitations of the experiment but also on the 

sampling size and range in Q-space. The use of divergent neutron beams and finite neutron 

wavelength spread can essentially ensure that the sampling can be made fine enough. The Q-

range limitation that is associated with each instrument however could lead to truncation 

errors in the measured correlation functions. These errors may be reflected in the form of 

fluctuations in the measured p(r) and G(r) functions or in that these functions do not vanish at 

the maximum linear dimension Dmax of the scattering particle. For typical small-angle 

scattering studies, Dmax is not a known parameter before the experiment. Reducing the 

truncation error is thus very important for obtaining correct structural information. The 

detector coverage on a SESANS instrument therefore should be as large as practically 

feasible. Such coverage cannot be increased without a consequence either. When the 

scattering angle is too large, the first-order approximation that has led to the expressions in 

equations (3) and (12) is no longer valid and the formalism presented here cannot be used for 

SESANS anymore. These limitations together restrict the smallest particle size that can be 

studied by SESANS. On the large-scale side, when an instrument is properly configured, the 

primarily limiting factors on the maximum Dmax value that can be studied by a SESANS 

instrument are no longer the geometrical parameters of the instrument, as is the case in 

conventional SANS. Rather, they are the homogeneity and accuracy of the magnetic fields, as 

well as the accuracies of the polarizer and analyzer. It is reported that particles 104Å and 

larger in size can be studied (Rekveldt 2000, Bouwman et al. 2000), extending SESANS well 

into the ultrasmall angle regime. Detailed analysis on the SESANS resolution function is 

currently under way. 
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In general, a SESANS experiment is beam divergence independent, and for reasons just 

discussed, divergent beams are preferred to well-collimated ones. In a Rekveldt setup (§3.2), 

such independence is maintained only along the slit direction. On a two-dimensional SESANS 

instrument (§2) and in its one-dimensional approximation (§3.1), the beam divergence 

independence is maintained when the size of the scattering sample is negligible. 

On the technical side, the design of a cylindrically symmetric Larmor precession device with 

conical ends may present some challenges. One might imagine that it should be possible to 

use cone-shaped mu-metals or superconductors to cover a solenoid to form such a device. 

Resonate spin flippers (Golub & Gähler 1987) and the recent development of magnetized foils 

in SESANS application (Bouwman et al. 2000) could also be explored for the current 

purpose. The conical faces of the Larmor device may also be approximated by many triangles 

that could lead to an easier construction. 

On steady-state neutron sources, the neutron polarizer and analyzer pose no serious challenge 

since supermirror polarizers can be used. Supermirrors are also applicable on pulsed neutron 

sources when only access to long wavelength neutrons is desired, though it would be 

challenging in a two-dimensional SESANS experiment. To access short wavelength neutrons, 

alternative polarizers such as the polarized 3He spin filters (Gentile & McKeown 1993) have 

to be evaluated. The disadvantage of 3He-polarizers is that high neutron polarization is 

difficult to achieve. Another possibility is to use a dynamically polarized hydrogen target 

(Zhao et al. 1995) as the spin filter. Close to full polarization of the hydrogen can be obtained, 

and hence high neutron polarization can be achieved. The polarized target is, however, 

primarily suited as a polarizer only. Unlike polarized 3He, which has a spin-dependent cross 

section for neutron absorption, the filtering effect of polarized hydrogen comes from the large 

spin-dependent scattering cross section of the hydrogen. Neutrons with the “wrong” spin 

direction are scattered in a 4π-solid angle. If a polarized hydrogen target is used as an 

analyzer, a relatively large portion of the scattered neutrons will be detected on the detector, 

degrading the effectiveness of the analyzer. 

Broadband spin flippers will also be needed on pulsed neutron sources. Recent progresses in 

the development of Drabkin flipper appear to hold great promise (Parizzi et al. 2000, Klose 

2001).
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[Figure Captions] 

Figure 1 (a) Cross-sectional view of the proposed two-dimensional SESANS setup. The two 

Larmor precession devices (±B) before and after the sample (O) have conical ends with 

rotational symmetry around the centerline of the Larmor devices (i.e., the z axis). The 

polarizing power of the polarizer P and analyzer A are P0 and PA, respectively. The flipper 

Fπ/2 is located before the analyzer and rotates the neutron polarization by 90°. The detector D 

is located behind the analyzer. The coordination system is defined such that the x, y, and z 

axes are along the vertical, horizontal, and neutron beam directions, respectively. In this 

system, the scattering angle θ and the azimuthal angle ψ  form the conventional polar angles. 

The azimuthal angle ψ  is defined as the angle between the x axis and the projection of the 

scattering direction on the x-y plane. (b,c) Two alternative setups with the sample centered 

between the two Larmor devices. The net Larmor precession angle of the neutron polarization 

in equation (2) becomes [ ]θθλϕ 0cot)2( lLBc +±≈∆ , respectively. l is the distance between 

the sample and either of the two Larmor devices along the z axis. In (b), a divergent incoming 

neutron (solid line with arrow) and a scattered neutron (dashed line with arrow) are shown.  

The validity of the net precession angle ∆ϕ in this case is ensured by the added small pinhole 

slit in front of the sample (see text). The same argument is also true for the cases (a) and (c). 

 

Figure 2 Left: One-dimensional SESANS setup based on Rekveldt (1996), with the 

modification of an optional slit (S) and a π/2 flipper (Fπ/2) added before the analyzer. The 

symbols and the coordinate system are defined as in Figure 1. Right: a sand-clock slit as 

viewed along the incoming neutron beam direction. Its usage is discussed in §3.1.  

 

Figure 3 Calculated p(r)(circles) and Π(r) (solid line) functions for a spherical particle with a 

1000-Å radius and uniform scattering density.  
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Figure 4 Calculated p(r) (circles) and G(r) (solid line) functions for a spherical shell with a 

1000-Å outer radius and a 700-Å inner radius. The contrast of the shell and its inner cavity are 

1 and –1, respectively. 
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[Figure 1] 
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[Figure 2] 
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[Figure 3] 
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[Figure 4] 
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