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Synopsis

Two-dimensional spin echo small-angle neutron scattering experiments are proposed for the
direct measurement of the vector-length distribution function. Interpretation of the correlation

function from one-dimensional experimentsis also presented.

Abstract

Two-dimensional spin echo small-angle neutron-scattering experiments that measure the
vector-length distribution function, or pair-distance distribution function, in real space are
discussed. The proposed diffractometer uses two cylindrically symmetric magnetic fields with
conically shaped front and end faces to enable experiments in two dimensions. It also features
ap/2 neutron spin flipper to make the effective analyzing direction of the analyzer
perpendicular to the polarizing direction of the polarizer. The theoretical aspect of one-
dimensiona spin echo small-angle neutron-scattering experiments is also explored. The
relationship between the correlation function from one-dimensional experiments and the
vector-length distribution function is established, and interpretation of this correlation
function in real space is presented.

1. Introduction

Spin echo small-angle neutron-scattering (SESANS) experiments, like the traditional spin
echo method (Mezei 1972), detect changes in neutron polarization after neutrons have passed
through two Larmor precession devices with opposing magnetic fields before and after the
sample. In the absence of the sample, the opposite precessions of the polarization vector in the
two fields cancel each other and the neutron polarization remains unchanged. In inelastic
experiments, energy transfers between neutrons and the scattering sample cause the neutrons
to change their speeds and hence their travel times within the second Larmor field. The net

Larmor precession angle s reflected in changes of neutron polarization and is analyzed



through a polarization analyzer. In SESANS experiments, variations in neutron path lengths
within the second precession field originated from sample scattering cause this net precession
angle. The magnetic fields are designed with inclined entrance and exit faces (Keller et al.
1995, Rekveldt 1996) such that to the first order, the neutron path length within the Larmor
deviceisalinear function of the scattering angle. With the development of the neutron
resonance spin echo technique (Golub & Géhler 1987), it became feasible to construct Larmor
precession devices with such inclined faces. The neutron resonance spin echo experiment uses
apair of spatially separated resonance spin flippers to replace the traditional magnetic field.
For small-angle applications, the flippers are placed into the neutron beam at an angle,
satisfying the inclination requirement (Keller et a. 1995). Many of the progressesin SESANS
development have been achieved only recently. (Rekveldt 1996, 1998, 1999, & 2000;
Bouwman et al. 1999 & 2000; Bouwman & Rekveldt 2000; van Oossanen €t a. 2000; and
Ucaet al. 2000).

In aconventiona small-angle neutron-scattering (SANS) experiment, the scattering intensity |
is measured as afunction of neutron momentum transfer Q. These 1(Q)-Q data are then
typically transformed into real space to obtain the so-called vector-length distribution function
p(r), also caled the pair-distance distribution function. A SESANS experiment, on the other
hand, measures a correlation function in real space. Paralel to an inelastic spin echo
experiment, where the detected time correlation function is the Fourier transform of the
energy transfer spectrum, SESANS measures a correlation function that is the Fourier
transform of the I(Q)-Q spectrum. Rekveldt defined the following correlation function

G(r) = pg(‘)S(Q)COS(Q )d’Q (1)

for the experimental setup described in (Rekveldt 1996). The 2/p factor is added here for
definition consistency within the current study. G(r) is obtained directly from analyzing the
neutron polarization or the neutron intensity after the analyzer. In this Fourier integration, the
scattering vector Q isdefined individually for each scattered neutron and the incoming
direction of that particular neutron is the reference vector for determining Q. Thisis contrary
to conventional SANS experiments, where the incoming neutron beam direction is used to
define the Q vector for all scattered neutrons. The immediate implication is that the
divergence of the neutron beam does not degrade the quality of the scattering datain SESANS
experiments the way it does in conventional SANS experiments. In simple terms, SESANS is
divergence independent. Thisis akey property that enables SESANS to extend its application
range well into the ultrasmall-angle regime (Rekveldt 1996). Neutron beams with relatively
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large divergence can thus be used to increase the counting rate. In fact, asis discussed later,
divergent neutron beams are preferred not only for the increased neutron flux but also for
increasing the completeness of the scattering data. Nonetheless, it must be pointed out that
such divergence independence is valid only in the first-order approximation. This is because
the G(r) function defined in equation (1) isvalid to the first order only. Further, it must be
cautioned that, depending on the instrument geometry, the divergence independence may be
restricted. In the Rekveldt (1996) setup, for example, such independence is true in one
direction only, namely along the direction in which scattering data are collected.

Equation (1) defines a clear relationship between the G(r) function and the scattering cross
section. What G(r) represents in real space, however, is not obvious. In small-angle scattering
experiments, the vector-length distribution function p(r) is most commonly used and readily
interpreted. It is therefore desirable to measure the p(r) function directly from a SESANS
experiment or to at least be able to interpret the G(r) function in real space. In this paper,
experimental concepts where the vector-length distribution function p(r) is the directly
measurable correlation function are proposed. A direct link between the G(r) and p(r)

functions is also established, and the interpretation of G(r) in real space is presented.

2. Two-Dimensional SESANS

2.1 Direct measurement of the vector-length distribution function

The proposed SESANS setup is shown in Figure 1, with familiar components found in a
typical spin echo experiment. The two key features that enable direct measurement of the
vector-length distribution function are the p/2 spin flipper and the cylindrically symmetric
magnetic fields with conically shaped entrance and exit faces. To facilitate discussions, the
polarizing direction of the polarizer and the analyzing direction of the analyzer are assumed to
be along the x direction. In addition, the Larmor fields are assumed to be along the + z
directions, and the 90° rotation of the neutron polarization by the flipper Fy2 occurs within the
x-y plane. Further, only the elastic scattering is considered. For strong inelastic scattering
systems, modified Larmor devices can be used to amplify the elastic contribution and

suppress the inelastic contribution to the Larmor precession angle (Rekveldt 1996).

To examine the neutron intensity on the detector, neutron polarization aong the pathway is
followed. Immediately after the polarizer, neutrons have the polarization Py, which isthe

same as the polarizing power of the polarizer. After precessing in the two opposite Larmor



fields, the polarization vector for the transmitted neutron beam remains unchanged. Consider
an incoming neutron along the z axis scattered into the (g,y ) direction, the net precession

angle of this neutron is (Figure 1a)
Dj »(d BLcotqg,)y, with c =g,m,/h=4.632" 10“T'm’2, (2)

in the first-order approximation for the small g -angle. q is the scattering angle, and y isthe
azimuthal angle. | isthe neutron wavelength, and L is the length of the Larmor field B
(Figure 1a). gy and my are the neutron gyromagnetic ratio and mass, respectively. h is

Planck’ s constant.

Because of the cylindrical symmetry of the Larmor devices, Dj does not depend on the
azimuthal angley . This feature allows data collection in two dimensions, namely in the x-y
plane. When compared to a one-dimensional SESANS instrument (Rekveldt 1996, see also
Figure 2), the disadvantage of this two-dimensional setup is that the divergence independence
is not preserved when the size of the scattering sample is not negligible. In the cross section
shown in Figure 1a, the above Dj expression is not valid for those incoming and scattered
neutrons whose pathways cross the centerline (i.e., the z axis) within either of the two Larmor
devices. The likelihood that a neutron crosses the centerline increases with the cross section of
the sample. To ensure the divergence independence, small scattering samples have to be used,
which can be achieved by placing a pinhole dit just before the sample. Similar Situation is
found in the two alternative Larmor device configurationsin Figures (1a) and (1b) and small
sample dits are needed in both cases. Using small scattering samples impliesimmediately the
loss of neutron intensity. To make up for such loss, focusing optics can be used. In principle,
the use of focusing techniques on a SESANS instrument is less complicated than that on a
traditional SANS instrument, because the former only needs focusing onto the sample while

the latter requires focusing onto the detector.

For neutrons scattered into the (g, y ) direction, the polarization becomes Pocos(Dj ). The total
beam polarization is obtained by summing over al scattered and transmitted neutrons.
1-T

P=TR+K s,

Q S(Q)cos(Dj )singdady

where S(Q), s1, and T are the coherent differential cross section, total cross section, and
transmission of the sample, respectively. S(Q)/s is the probability for a neutron to be
scattered into aunit solid angle in the (q, y ) direction. For smplicity, the practical limit on the

scattering angle by an actual instrument is omitted, and 4p- solid angleis used asthe



boundary. Errors associated with alimited g -range is discussed in 85. Further, the incoherent

scattering cross section is not considered.

For asmall g, the momentum transfer Q = 4psin(q/2)/l » 2pg/l . The Larmor angle Dj can be
expressed as

Dj =Qrwithr = Z%CI ’BLcotq, - (3)

Ther parameter has the unit of [m]. Rekveldt (1996) described r as alength parameter of the
scattering particle. Bouwman et al. (2000) stated further that r is the distance between two
points or volume elements in the scattering particle. The following discussion provides a

logical explanation for ther parameter.

After the Fy flipper, the transmitted neutrons no longer contribute to the total polarization
along the x direction. Replace Dj in P, with equation (3), and add the 90°-phase shift to it.
Also, substitute the scattering angle q as well as sinq with the momentum transfer Q. The

neutron polarization after the flipper becomes

_ 1-T R : .
P=K 2pcBL cotqs ; agly o5(Q)sin(Qr)QrdQ

For isotropic scattering systems, the scattering cross section is a function of the scattering
angle g only and does not depend on the azimuthal angley . Casesin which ordering existsin
the sample and the scattering pattern is asymmetric with regard to the y - angle are not
considered here. The integration over y intheintegra is then separated from the rest, yielding
the factor 2p.

After the analyzer, the detected neutron intensity on the detector I(B,| ) is expressed as
_ 6. 12, . u
1(B,1)=1[1+RP]= |o§l+ﬁaoS(Q)9n(Qr)QrdQH , (@)

2cLs ; cotq,

with k = :
PRPAL-T)

where P4 is the analyzing power of the analyzer. | is the neutron intensity when P,P5 = 0
(e.g., when neutrons are totally depolarized between the polarizer and analyzer). Because of
the presence of the Fy, flipper, 1o can also be measured with the precession fields +B set to

zero. The parameter k is a constant for a given experiment. The intensity (B, ) isafunction



of both the magnetic field and the neutron wavelength, which is evident explicitly, or

implicitly, through the r parameter [equation (3)].

Theintegral part in equation (4) defines the vector-length distribution function p(r) (Guinier
& Fournet 1955).

p(r) = 2 3 SQSNQN(@N)AQ - )

The upper integration limit for the momentum transfer is determined by the wavelength of the
neutrons and the maximum scattering angle of 180°. For mathematical convenience, infinity is
commonly used. For scattering particles with uniform scattering length density, p(r) isthe
distribution of the distancesr joining two points or volume elements. Thus, the r parameter
defined in equation (3) is the length of the scattering vector within the scattering particle. The
reverse transform of equation (5), which will be used in the next section, islisted hereas a

reference.

sm(Qr) dar -

SQ = g P T ©)

Infinity is again used as the upper limit for r for mathematical convenience. The true physical

limit is the maximum linear dimension of the scattering particle.

Thus, by using a p/2 spin flipper in combination with magnetic fields that have conical front
and end faces, the vector-length distribution function p(r) is measured directly. Substitution of
equation (5) into equation (4) yields

p(r) = KBe- ) - 1. 7)
u

Measurements at different r values are achieved either by changing the Larmor field B or by
scanning through a neutron wavelength band. Integral structure parameters of the scattering
particle, such as the forward scattering intensity and the radius of gyration, are readily

obtained from the zero and second moments of the p(r) function.

In addition to making the direct measurement of the p(r) function possible, the use of the Fy»
flipper has an additional benefit of suppressing haf of the transmitted neutron beam, which in

turn means lower background and higher signal-to-noise ratio.



2.2 Without the Fy, flipper

Although the Fy2 flipper is an essential component in the proposed instrument, it is interesting
to look into situations where the flipper is absent. The polarizationP, in equation (4) is now
replaced with P;. Parallel to discussionsing2.1, the correlation function is defined as

2 ¥
P(r)= @ S(Q) cos(Qr)(Qr)dQ - (8
From the neutron intensity data, P (r) is obtained through

él(B,l u
B g+mp)g- ©)
e 0 u

P(r) = kBag——?

Unlike the p(r) function, the P (r) function is not readily interpretable in real space. By
denoting h(r)=P (r)/r and q(r)=p(r)/r, it is observed that h(r) and g(r) are the real and
imaginary part of the complex Fourier transform of the functionQ-SQ). In the following
paragraphs, it is shown that a dispersion relation exists between theh(r) and q(r) functions
and that a pair of Hilbert transforms links the two functions. Substitution of S(Q) from
equation (6) into equation (8) yields

P(r) :3(5 p(rd)Ler‘SSin(Qrd)cos(Qr)dQ

_ 1 £eos(ré nQ cos(r¢+r)Qu
- pr(rQ) drS re-r ré+r HQO

Because p(r) = 4p r’q(r), o) is the correlation function in small-angle scattering (Debye &
Bueche 1949) and is analytic; therefore, the functionp(r)/r is also analytic. The contour of
integration can thus be deformed off the real axisin the complex plane ofr¢=u + iv. The
above integral is rewritten as

geriENQ  oi(renQ U¥

P(1)=" 5 Q P9
1

+ g
e r¢-r ré+r U=o .

Gt N J(renQ

- Q) P9 €S i
Vio Q grér r¢+r Hb:o

The contour C. is chosen below the real axis (v<0) for the first integral, and the contour C. is
chosen above the real axis (v>0) for the second integral. Replacingréwith u + iv, the

exponentials are written as e*'(*"? = "¢ *)? Therefore, the choice of the contours



guarantees that all the exponentials vanish asQ ® ¥. Omitting the notion for the contours, the
previous equation becomes

_2r ¥ p(r9 e
P()=Qrg. 70 (10)

Similarly, the reverse transform of equation (10) isfound by substituting the reverse transform
of equation (8),

SQ =GP g dr

into equation (5). With the same procedure, it isfound to be

2y P(r9

p QrG{r(f— r2)dr¢- (11)

p(r) =-

Equations (10) and (11) describe the dispersion relationship between the P (r) and p(r)
functions. Both of them have asingular point atr¢=r. Figure 3 plotsthe p(r) and P (r)
functions for auniform sphere. It is noted that P (r) goes to negative at larger’s. It isalso
noted that P (r) is an experimentally measurable quantity. This is not a contradiction because
P (r) is obtained by subtracting a constant from the actually measured (B,| ) data [equation

(9)]. I(B,] ) isthe neutron intensity or neutron counts that cannot be negative.

3. One-Dimensional SESANS

3.1 p(r)-measurement in one-dimensional experiments

When the Larmor precession devices have flat, inclined entrance and exit faces, as described
in Rekveldt (1996) (see also Figure 2), the equations that have been derived for measurements
in two dimensions are no longer applicable. Thisis because the Larmor precession angleDf is

now afunction of the azimuthal angley . Equation (3) is replaced by
Dj =Qrcosy - (12)

The correlation function defined with thisDj cannot be readily interpreted in real space. To
obtain a meaningful correlation function, constraint on the instruments is made. From
equation (12), it can be seen that if adlit is added between the sample and the detector to limit
the azimuthal y angle to asmall range (-Dy /2, Dy /2) such that cosy ® 1, the formalism



presented in 82 can be used again. The only modification to the equations is to replace the
constant k in equations (7) and (9) with k¢= (2p /Dy )k.

To maintain a constant Dy range for al scattering anglesq, the dlit has to have the shape of a
sand clock (Figure 2). Parallel to discussionsin 8.1, the size of the sample has to be small for
cosy ® 1 to bevalid for al neutrons scattered off the sample. The loss in neutron counting rate
on the detector due to small sample can at |east be partially compensated by the usage of

focusing optics.

3.2 Rectangular dlit, no Ry flipper - Rekveldt setup

With arectangular dlit along the x direction (Figure2), the discussion in 8§3.1 is no longer
applicable because the range of the azimuthal angle Dy is now inversely proportional to the
scattering angle g. Assuming the scattering sample has a negligible dimension in they
direction, a one-dimensional approximation along the dlit direction {.e., the x direction) can
be used. Rekveldt (1996) uses supermirrors aligned close to the x-z plane as the analyzer. The
limited total reflection angle of the mirrors restricts the acceptableQ-range along the y
direction (DQy). In the following discussions, such aQ limitation is approximated as an

effective narrow dlit. Errors associated with afinite DQy value are discussed as well.

To have the same configuration as in Rekveldt (1996), thep/2 spin flipper is removed from
the neutron beam path. The importance of the Rekveldt setup is underlined by recent technical
developments (Bouwman et a. 1999 & 2000).

In one-dimensional approximation, the correlation function in equation () is modified to
2 ¥
G(r) = PO S(Q) cos(Qr)dQ - (13)

The integration is taken along the +x direction only. Integration along—x direction defines the

same G(r). For reference, the inverse transform of equation (13) is given by
¥
S(Q) = (‘9 G(r)cos(Qr)dr - (14)

From neutron intensity on the detector 1(B,] ), G(r) is obtained through [compare to equation

(9)]

K€ EBL) (h tRR) - (15)

G(r)= e
() |que IO u
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The constant k2 isdefined as k= ——T
f,L- T)RP,

. f; and f, denote the fractions of scattered

and transmitted neutrons that pass the dlit, respectively. Dgy is the maximum scattering angle
along they direction accepted by the dlit or the supermirror. The wavelength factorl comes
from the substitution of integration over solid angle with integration overQ in G(r) [equation
(13)]. On steady state neutron sources, where the scanning inr space is commonly achieved
by changing the magnetic field [equation 3)], both Dgy and | remain unchanged. The
extraction of the G(r) function from the experimental data [equation (15)] isthen
straightforward. On time of flight instruments where wavel ength changes, the situation is
different. With arectangular dlit, theDgy value remains unchanged for a given experiment.
Therefore, only al “*- correction is needed when extracting G(r) from the scattering intensity
[equation (15)]. With a supermirror analyzer, Dgy increases linearly with neutron wavelength,

resulting into al ~2- correction.

Obviously, for equations (13) and (14) to be valid, Dgy and its corresponding Q-range DQy
have to be small. Analog to the arguments regarding the minimum experimental Q value and
the maximum scattering particle size Dy in traditional SANS experiments (Feigin &
Svergun 1987), agood limit on DQ, would be DQy < p/Dmax. A larger DQywill result in a
smearing effect which will be discussed in detail elsewhere. In Rekveldt (1996), the totd
reflection angle of the supermirror analyzer is 3 mrad/A, which corresponds toDQ,

~0.02 A, or Dyex ~ 150 A. To study large particles, better limit onDQ, has be imposed, such
as by using an analyzer dlit in front of the analyzer. Such a dlit, along wth the previous
assumption that the sample dimension in the y direction is negligible, reduces the neutron
counting rate on the detector. To increase the counting rate, the Rekveldt setup could be
modified to use a multi channel supermirror anayzer in cambination with a Soller collimator
(Soller 1924) in front of the analyzer, with each collimator channel defines the maximumDQy

value. Such a setup will alow the use of large samples (i.e., aong they direction).

To seek an interpretation of G(r) in real space, arelationship between the G(r) and p(r)
functionsis established. Substitution of S(Q) in equation (13) with equation (6) leads to

_2¥p((r9 . .¥sin(Qr9cos(Qr)
G(r)—aQ 0 drb 9 dQ.

_ X p(r9
= OWer:

(16)
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The integral over Q in the first step vanishes for rér but yieldsp/4 for ré=r and p/2 for r¢>r.
The second step is obtained by adding an additional (p/4) term for ré=r. The added termisto
be subtracted, but it vanishes as dr¢tends O.

The G(r) function thus corresponds to the total r™'- weighted probability of finding two points
within the scattering particle separated by a distance of r or larger. Two properties for the G(r)
function are immediately apparent.

(a) G(r) vanishes at the maximum linear dimension of the scattering particleDyyx.

(b) For ascattering particle whose p(r) function is positive for alr-values, G(r) isa
monotonically decreasing function.

Thefirst property is an immediate consequence of p(r) © 0 beyond Dnax. The second property
holds in most scattering experiments. Exceptions are found where the contrast of the
scattering particle fluctuates below and above zero, which can be found in contrast variation
experiments. The varying sign of the contrast can produce negativep(r) values for certain

r regions, reflected as oscillations in theG(r) function. Now, the oscillatory behaviorsinG(r)
presented in Bouwman & Rekveldt (2000) can easily be understood. Figure 4 shows the G(r)
and p(r) curvesfor the single shell model used by Bouwman & Rekveldt (2000). The model
has opposing contrast for the inner cavity and the outer shell, resulting in negative p(r) for r’'s
in the mid-range. The negativity comes from the interatomic vectors linking the shell and the
cavity. It isreflected in theG(r) function as an upturn at the r values where p(r) goesto

negative and as a downturn where p(r) becomes positive again.
The reverse of eguation (16) is readily obtained:

dG(r)

ar (a7)

p(r) =-

Integral structure parameters of the scattering particle can be calculated either from the
hereby-obtained vector-length distribution functionp(r) or directly from the G(r) function.
The forward (i.e., at Q=0) scattering intensity [(0) and the radius of gyration Ry are expressed
inG(r) as

1gdGm

1(0) =- ¢r d[G(r)] and Rg = > ér diG(]

(18)

[(0) and Ry are thus obtained from the first and third moments of r in G space.
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3.3 Rectangular dlit, with Fy, flipper

When an Fy2 flipper is added to the Rekveldt setup, the correlation function is defined as the
sine transform of §(Q):

G = > § SQSnQNAQ -

Q(r) is extracted from the neutron intensity data through

ke €1(B,1)
ACADN

Ique IO

qr) =

C>EC*

The situation becomes similar to 82.2 in terms of relating (r) to G(r) since adispersion
relation exists between them as well. With the same procedure asin 82.2, the dispersion

relation is found to be

- & x G(r =23 TC9 g
G(r) = pQr@—rzdrq:' and G(r) pQr@—rzdrq:

Under certain circumstances, measuring G(r) could be preferred since the use of the Fy2

flipper suppresses half of the transmitted neutron beam.

4. Time of flight SESANS

On a pulsed neutron source, neutrons of different wavelength are selected according to their
travel times from the source to the detector. This intrinsic property of sweeping through a
wavelength band means that scanning through ther space [equation (3)] is automatic. A time-
of-flight SESANS instrument thus has a great advantage over instruments on steady-state
sources. The speed at which neutron wavelength changes on time-of-flight instruments can be
much higher than that of sweeping through a magnetic field; thus, very rapid experiments
become possible. With a strong neutron source, such as the Spallation Neutron Source under
construction at Oak Ridge National Laboratory in the United States, it will be possible to
collect awhole p(r)-r or G(r)-r data set with good statistics within a single neutron pulse. The
instrument can be constructed and tuned such that the wavelength spectrum within asingle
frame covers the whole r space. This should become possible sincer is afunction of

wavelength squared [equation (3)].

On the contrary side, specia care must be taken on pulse sources in both designing the

instrument and conducting an experiment. Since an instrument has fixed dimensional
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parameters, the Q-range covered by the instrument changes with varying neutron wavelength.
Potential truncation errors, as are discussed in more detail in the next section, will then vary
with the neutron wavelength. Also, from technical discussionsin the next section, broadband

neutron polarizers and flippers are necessary on time-of-flight SESANS instruments.

5. Discussion

When properly configured and constructed, SESANS experiments can be used to measure the
correlation functions that are readily interpretable in real space. In two-dimensional SESANS
experiments (82.1), the vector-length distribution functionp(r) is the direct measurable
quantity. In one dimension, either the p(r) or the G(r) function is directly extracted from the
neutron data on the detector depending on the design of the dlit (83). In broad terms, all these
functions are Fourier transforms of the scattering cross section. Thus, the accuracy of their
measurements depends not only on the statistical limitations of the experiment but also on the
sampling size and range in Q-space. The use of divergent neutron beams and finite neutron
wavelength spread can essentially ensurethat the sampling can be made fine enough. The Q-
range limitation that is associated with each instrument however could lead to truncation
errorsin the measured correlation functions. These errors may be reflected in the form of
fluctuations in the measured p(r) and G(r) functions or in that these functions do not vanish at
the maximum linear dimension Dnay Of the scattering particle. For typical smallangle
scattering studies, Dyex iS N0t a known parameter before the experiment. Reducing the
truncation error is thus very important for obtaining correct structural information. The
detector coverage on a SESANS instrument therefore should be as large as practically
feasible. Such coverage cannot be increased without a consequence either. When the
scattering angle is too large, the first-order approximation that has led to the expressionsin
equations (3) and (12) is no longer valid and the formalism presented here cannot be used for
SESANS anymore. These limitations together restrict the smallest particle size that can be
studied by SESANS. On the large-scale side, when an instrument is properly configured, the
primarily limiting factors on the maximumD .« Value that can be studied by a SESANS
instrument are no longer the geometrical parameters of the instrument, asisthe casein
conventional SANS. Rather, they are the homogeneity and accuracy of the magnetic fields, as
well as the accuracies of the polarizer and analyzer. It is reported that particles 10°A and
larger in size can be studied (Rekveldt 2000, Bouwman et al. 2000), extending SESANS well
into the ultrasmall angle regime. Detailed analysis on the SESANS resolution function is

currently under way.
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In general, a SESANS experiment is beam divergence independent, and for reasons just
discussed, divergent beams are preferred to well-collimated ones. In a Rekveldt setup (83.2),
such independence is maintained only along the dlit direction. On atwedimensional SESANS
instrument (82) and in its one-dimensional approximation (83.1), the beam divergence

independence is maintained when the size of the scattering sample is negligible.

On the technical side, the design of a cylindrically symmetric Larmor precession device with
conical ends may present some challenges. One might imagine that it should be possible to
use cone-shaped mu-metals or superconductors to cover a solenoid to form such a device.
Resonate spin flippers(Golub & Gahler 1987) and the recent development of magnetized foils
in SESANS application (Bouwman et al. 2000) could also be explored for the current
purpose. The conical faces of the Larmor device may also be approximated by many triangles

that could lead to an easier construction.

On steady-state neutron sources, the neutron polarizer and analyzer pose no serious challenge
since supermirror polarizers can be used. Supermirrors are aso applicable on pulsed neutron
sources when only access to long wavelength neutrons is desired, though it would be
challenging in atwo-dimensional SESANS experiment. To access short wavelength neutrons,
alternative polarizers such as the polarized ®He spin filters (Gentile & McKeown 1993) have
to be evaluated. The disadvantage of *He-polarizersis that high neutron polarization is
difficult to achieve. Another possibility isto use adynamically polarized hydrogen target
(Zhao et a. 1995) as the spin filter. Close to full polarization of the hydrogen can be obtained,
and hence high neutron polarization can be achieved. The polarized target is, however,
primarily suited as a polarizer only. Unlike polarized®He, which has a spin-dependent cross
section for neutron absorption, the filtering effect of polarized hydrogen comesfrom the large
spin-dependent scattering cross section of the hydrogen. Neutrons with the “ wrong” spin
direction are scattered in a4p-solid angle. If a polarized hydrogen target is used as an
analyzer, arelatively large portion of the scattered neutrons will be detected on the detector,
degrading the effectiveness of the anayzer.

Broadband spin flippers will also be needed on pulsedneutron sources. Recent progressesin
the development of Drabkin flipper appear to hold great promise (Parizzi et a. 2000, Klose
2001).
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[Figure Captions]

Figure 1 (a) Cross-sectional view of the proposed two-dimensional SESANS setup. The two
Larmor precession devices (+B) before and after the sample (O) have conical ends with
rotational symmetry around the centerline of the Larmor devices (.e., the z axis). The
polarizing power of the polarizer P and analyzer A arePy and Pa, respectively. The flipper
For2 is located before the analyzer and rotates the neutron polarization by 90°. The detector D
is located behind the analyzer. The coordination system is defined such that the x, y, and z
axes are along the vertical, horizontal, and neutron beam directions, respectively. In this
system, the scattering angleq and the azimuthal angley form the conventional polar angles.
The azimuthal angley is defined as the angle between the x axis and the projection of the
scattering direction on the x-y plane. (b,c) Two alternative setups with the sample centered
between the two Larmor devices. The net Larmor precession angle of the neutron polarization
in equation (2) becomes Dj » i[cl B(L + 2I)cotq0h , respectively. | is the distance between
the sample and either of the two Larmor devices along the z axis. In (b), adivergent incoming
neutron (solid line with arrow) and a scattered neutron (dashed line with arrow) are shown.
The validity of the net precession angleDj in this case is ensured by the added small pinhole

dit in front of the sample (see text). The same argument is aso true for the cases (@) and (c).

Figure 2 Left: One-dimensional SESANS setup based on Rekveldt (1996), with the
modification of an optional dit (S) and ap/2 flipper (Fo2) added before the analyzer. The
symbols and the coordinate system are defined asin Figurel. Right: a sand-clock dlit as

viewed aong the incoming neutron beam direction. Its usage is discussed in 83.1.

Figure 3 Calculated p(r)(circles) and P (r) (solid line) functions for a spherical particle with a

1000-A radius and uniform scattering density.
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Figure 4 Calculated p(r) (circles) and G(r) (solid line) functions for a spherical shell with a
1000-A outer radius and a 700-A inner radius. The contrast of the shell and itsinner cavity are

1 and —1, respectively.
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