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Semiconductor neutron detectors can be
divided into two classes:

m Thin-film coated or “foil” coated detectors

Thin-film detectors refer to diodes that have an
overcoat of neutron reactive materials.




o Compact Semiconductor Neutron Detectors

Two very popular neutron reactions for thermal
neutron detection are the '°’B(n,a)’Li reaction and
the °Li(n,0)’H reaction.
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Basic configuration for thin-film
coated detectors
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d Theoretical Considerations
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Reaction product ranges in pure boron

Transmitted Energy vs. Deposition Position

Below: Bragg energy IOSS . for the 1‘OB(n,O()7Li Reaction in Pure '°B
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Reaction product ranges 1n LiF and L1
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Front and back irradiation make
difference
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Optimum Thermal Neutron Detection

Efficiency
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With the LLD set at 300 keV equivalent, maximum
efficiencies range from 4% up to 12.8% depending on the

film and the irradiation direction.




~« Comparison Spectra of °LiF and !“B-
Coated Devices

e 1.1pm'"B
3.0% L 35 pm 6LiF

efficiency
4.6%
efficiency

E
=
=
@)
b=
O
Q.
2
=
=
o
@)

200 300 400 500 600 700 800

Channel Number

10B-coated devices require less material while
LiF-coated devices have improved gamma ray discrimination.
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(C Double-Coated Design
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6.8%
Efficiency
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12.86 %
Efficiency
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o Comparison Spectra of Single-Coated
and Double-Coated Devices
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“Sandwich”
Designs

—— Double Inward Devices
— - Double Outward Devices
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Comparison Spectra of Single and
Double-Inward °LiF-Coated Devices
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(Gamma ray discrimination through coincidence
counting of “sandwich’ devices
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Dimpled Devices

Problems with cracking
and peeling of boron films
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Dimpled Devices

SEM profile of two 3.5 micron

diameter holes with a 4.0
micron boron coating

®  Flat Device (1 pm '’B)
® 1.7 um Deep Vias
(4 um '°B)
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Compound Double-Coated “Sandwich”
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®  24pm '°B/30 um °LiF/2.4 pm "°B
* 24um'B
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~ Neutron Beam-Stop Montitors

Operated 1n real time to monitor
the transmitted beam of the TOF

SAND instrument at ANL

Thermal
(0.0259 eV) Time of Flight Histogram
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*Small — fits directly in beam stop

*Continuous monitoring

*Relatively insensitive to gamma rays
*Hardened — months of continuous use with no visible degradation

*Concurrent data measurements with other SAND instruments — increases

accuracy and effective use of beam time 55
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[ Profile Results

Aluminum test block
with water-filled holes

Thermal neutron
transmission
count rate

Relative Counts
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Tomographic Slice Results

Al block
with water
columns

Reconstruction with Shepp
and Logan filter

Water column image

reconstruction
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Self-Biased Designs
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(4 The '>’Gd Option
- advantages -

m High thermal neutron cross section.

Natural Gd has a cross section of 46,000 barns for 2200
m/s neutrons (240,000 barns for pure °7Gd).




4

The °7Gd Option
- disadvantages -

m Low energy reaction products for
157Gd(n,y)'>%Gd reactions




®Single pad detectors have been developed on
S1,amorphous S1, GaAs, and diamond

substrates.
®Pixel detectors have been developed on Si,
amorphous Si1, and GaAs substrates.




- —e— (Gd-Coated Pixel Portion
Additive ( —=e&— Uncoated Pixel Portion
Pixel Portion —v— Subtracted Response

(coated)

Subtractive
Pixel Portion
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Channel Number

Gd-coated compensated pixel devices with the self-biased
configuration are under investigation.
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4 :
Solid Form Neutron Detectors

Gamma ray emitting semiconductors (examples):
CdTe, CdZnTe, Hgl,

= Kansas State University
= Sandia National Laboratories




Cd-based devices

=The concept utilizes the '3Cd(n,y)!*Cd reaction.

=113Cd occurs at a natural abundance of 12.26%.

=20,000 barn thermal neutron cross section

" A 3mm thick CdTe device 1s virtually opaque to thermal neutrons.




Devices from CdTe and CdZnTe
have been explored
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COUNTS

Smm thick Hgl, device
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ENERGY (keV)

A.G. Beyerle and K.L. Hull, Nucl.
Instr. and Meth., A256 (1987) 377.

Hgl, Device Concept

The neutron induced response
1s shown 1n spectrum (¢).

*The concept utilizes the
199Hg(n,y)?’’Hg reaction.
=199Hg occurs at a natural
abundance of 17%.

=2000 barn thermal neutron
Cross section.

* Prominent emission at 370
keV.

"[ncreased capture of prompt
gamma rays.

37



Boron-based devices

Commonly studied materials include BP, BAs, and BN —
other materials include BBO, B,C, and L1,B,0-

-to date, no clear success has been claimed.

BP and BAs decompose in the high temperatures required for



Barium Borate Devices

Pulsed microprobe operation
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F. P. Doty, I. Zwieback, W. Ruderman, patent US-6,388,260.




Results from solid pyrolytic BN material
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After one day of operation, the
devices become much noisier

and the LLD must be set higher.
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(from Advanced Ceramics)

® [nital response

e After 1 day in neutron beam

The device was
2mm thick and
Smm X Smm 1n
area. It required
900 volts to
operate. Pulses
were observed,
but device
degradation was
obvious after one
day.
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Summary

m Thin-Film-Coated Semiconductor Diodes
can be used as thermal neutron detectors.

m The detectors are compact, operate at room
temperature, and are rugged.




Summary (cont.)

m Solid form semiconductor neutron detectors
offer superior neutron absorption to thin-
film-coated devices.

m Prompt gamma ray emitting devices




——od . :
A few references regarding thin-film-
coated pixelated devices:

A. Mireshghi et al., IEEE Trans. Nucl. Sci., 39 (1992) 635.

1.
2. A. Mireshghi et al., IEEE Trans. Nucl. Sci., 41 (1994) 915.
3. C. Petrillo et al., Nucl. Instr. Meth. A378 (1996) 541.
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