
SANS Investigation of the Photosynthetic Machinery of Chloroflexus
aurantiacus

Kuo-Hsiang Tang,†‡ Volker S. Urban,§ Jianzhong Wen,†‡ Yueyong Xin,†‡ and Robert E. Blankenship†‡*
†Department of Biology and ‡Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri; and §Center for Structural
Molecular Biology, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee

ABSTRACT Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain

specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to

obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex,

the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic

bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is

wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus

is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was

suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of

the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like

shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two pop-

ulations of chlorosome particles are suggested in our SANS measurements.

INTRODUCTION

Photosynthesis is the ultimate source of all food and most

energy resources on Earth, and photosynthetic organisms

use solar energy to drive the synthesis of organic com-

pounds such as biofuels and biomass. Photosynthetic organ-

isms such as bacteria, algae, and plants use light-harvesting

complexes (LHCs) to capture light energy and transfer the

excitation energy to reaction centers (RCs), where electron

transfer for photochemistry takes place. To perform these

complex biological processes, various types of phototrophic

bacteria employ distinct photosynthetic mechanisms that

are simpler than those found in algae and higher plants.

The photosynthetic apparatus includes LHCs and RCs,

which together harvest solar energy and convert the excited

light energy into chemical energy that is stored for use in

cellular metabolism and function (1).

Several biophysical approaches, including x-ray crystal-

lography, electron microscopy (EM), mass spectrometry,

and many types of optical spectroscopy, have been used to

investigate the structure of the photosynthetic machinery

in various phototrophic organisms (2). In addition to these

techniques, small-angle neutron scattering (SANS) has

been demonstrated to be a reliable technique for investi-

gating (bio)macromolecular assemblies in solution (3–5),

with some advantages and disadvantages compared to

small-angle x-ray scattering (SAXS) (6,7). However, to date

there have been very few applications of SANS to photosyn-

thetic complexes. Although both coherent and incoherent

scattering lengths contribute to the neutron scattering,

SANS is a coherent scattering method and thus considers

only the coherent scattering length. One of the advantages

of SANS compared to SAXS in structural studies is that

SANS uses contrast variation. Deuterium has a much larger

coherent scattering length (6.67 � 10 13 cm) than hydrogen

( 3.74 � 10 13 cm), and, in contrast, hydrogen has much

larger incoherent scattering length (25.18 � 10 13 cm) than

deuterium (3.99 � 10 13 cm) (8). A few previous studies

have examined photosynthetic pigment-protein complexes

using SANS or neutron diffraction (9–13), and SANS

studies have also been reported for various isoforms of iso-

lated bacteriochlorophylls (BChls) (14–16). However, to our

knowledge, no previous SANS reports have been concerned

with the photosynthetic machinery of the green photosyn-

thetic bacteria, including green sulfur bacteria (GSBs) and

filamentous anoxygenic phototrophic (FAP) bacteria, which

are known to efficiently harvest light in low-light environ-

ments (17).

In this study, we sought to obtain solution structural

insights into the photosynthetic machinery of Chloroflexus

(Cfx.) aurantiacus, one of the most investigated FAP bac-

teria (18). The proposed energy transfer in the photosyn-

thetic machinery of Cfx. aurantiacus is shown in Fig. 1 A.

In Cfx. aurantiacus, the light energy absorbed by the

chlorosome is transferred to the chlorosome baseplate,

the integral membrane light-harvesting B808-866 complex

(19–22), and then to the RC. The absorption spectra of the

intact membrane, chlorosome, B808-866 complex, and RC

of Cfx. aurantiacus are shown in Fig. 1 B. The B808-866
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complex of Cfx. aurantiacu has been proposed to function

similarly to the B880 LHC I (LH1) of the purple photosyn-

thetic bacteria (17). The crystal structure for the LH1-RC

core complex of the purple bacterium Rhodopseudomonas

(Rps.) palustris indicates that one RC is located within

one LH1 ring (23,24), whereas a dimeric RC-LH1 complex

was observed in Rhodobacter sphaeroides by atomic force

microscopy (AFM) (25,26). The RC and B808-866 complex

assembly is an essential element in the attempt to obtain

more detailed structural information about the photosystem

of Cfx. aurantiacus.

The chlorosome, the peripheral light-harvesting antenna

complex located on the cytoplasmic side of the inner mem-

brane in green photosynthetic bacteria, has little protein

associated and contains 135,000–300,000 self-assembled

BChls (27). The BChl self-assemblies in the chlorosome

can absorb light in the red to near-infrared region, and

thus the green photosynthetic bacteria can transfer excita-

tion energy efficiently under low-light intensity environ-

ments. No atomic-resolution structural information has

been reported for the chlorosome of Cfx. aurantiacu. In

this study, we investigated the size and overall conformation

of the B808-866 complex using SANS and dynamic light

scattering (DLS), and compared the solution conformation

of the B808-866 complex and RC of Cfx. aurantiacus

with the crystal structure for the LH1 and RC of Rps. palust-

ris (23). Moreover, to verify SANS studies for Cfx. auran-

tiacus, we compared the solution conformation acquired

by SANS with crystal structures for the RC and peripheral

B800-850 LHC II (LH2) of the purple bacteria. Finally,

the structural information of the chlorosome was probed

by SANS.

MATERIALS AND METHODS

Sample preparation

Chloroflexus aurantiacus strain J-10-fl was cultured anaerobically under

low-light conditions as described previously (28). RC-lauryldimethylamine

N-oxide (RC-LDAO), B808-866-octyl-b-D-glucopyranoside (bOG), and

the chlorosome for Cfx. aurantiacus (19,29–32), and B800-850 LHC II

(LH2)-LDAO mixtures (33) for Rhodobacter sphaeroides were prepared

as reported previously. The critical micelle concentration (CMC) of

LDAO (0.04% (w/v)) and bOG micelles (0.8%) (34,35) was included in

the RC-LDAO and B808-866-bOG mixtures in 20 mM Tris-HCl buffer at

pH 8.0, and the chlorosome were prepared in 20 mM Tris-HCl buffer at

pH 8.0. Samples for contrast variation were prepared as follows: for Rb.

sphaeroides: 100% D2O for RC-LDAO mixtures, and 0, 10, 20, 45, 80,

and 100% D2O for LH2-LDAO mixtures; for Cfx. aurantiacus: 0, 25, 40,

60, 80, and 100% D2O for the chlorosome, and 0, 17, 40, 80, and 100%

D2O for B808-866-bOGmixtures, and 5, 40, and 100% D2O for RC-LDAO

mixtures.

General principle of contrast variation

The values of neutron scattering density for H2O and D2O are  5 �

109 cm 2 and 64� 109 cm 2, respectively, and one can be achieve different

solvent scattering densities by mixing different ratios of H2O and D2O in

solution. Also, the average scattering density of various biological mole-

cules is varied in different D2O/H2O ratios in solution. Contrast matching

occurs when the average scattering density of a biological molecule

matches the solvent scattering density in a D2O/H2O ratio. The matching

point is 40–45% D2O for proteins, 65–70% D2O for nucleic acids, and

5–25% D2O for lipids.

SANS data collection and analysis

We performed SANS using the CG-3 Bio-SANS instruments of the Center

for Structural Molecular Biology at the High Flux Isotope Reactor of Oak

Ridge National Laboratory. The data were collected with a two-dimen-

sional 0.4 m � 0.4 m position-sensitive He3 detector (Ordela, Oak Ridge,

TN). The scattering data were collected at different sample-to-detector

distances and covered the desired q range (q (momentum transfer vector) ¼

4psinq/l, where 2q is the scattering angle). Two sample-to-detector

distances (1.1 m and 6.8 m), with neutron wavelength (l) ¼ 6.0 Å and

wavelength spread (Dl/l) ¼ 0.15, were applied to collect scattering data

in 0.0064 < q < 0.064 Å 1 (6.8 m) and 0.026 < q < 0.35 Å 1 (1.1 m)

for the samples reported here. Further, one additional instrument configura-

tion, with neutron wavelength ¼ 18 Å and sample-to-detector distance ¼

15.3 m, was used to collect the data in the low-q region (0.0009 < q <

0.01 Å 1) for the chlorosome. Both protein and buffer scattering profiles

were collected by identical procedures and the buffer scattering profiles

were subtracted for background correction. SANS data reduction further

included normalization for flux, sample transmission, and sample thickness;

correction for instrument-specific (dark) background; and azimuthal aver-

aging, which provides scattering intensities per solid angle as a function

of q. Detailed information on the data analysis and modeling is provided

in the Supporting Material.

FIGURE 1 (A) The proposed photosystem. (B) Absorption spectra of

the intact membrane, chlorosome, B808-866 complex, and RC of Cfx.

aurantiacus.
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RESULTS

SANS for the LH2 and RC of Rhodobacter

sphaeroides

In nonsulfur purple bacteria, light harvesting is accom-

plished by two types of antenna complexes: the peripheral

B800-850 LHC II (LH2) and core LHC I (LH1) in the

RC-LH1 core complex. LH1 and LH2 have generally

similar ring structures, although the LH2, composed of nine

subunits of the ab-heterodimer, has a smaller ring size than

the LH1, which consists of 16 subunits of the ab-hetero-

dimer. In contrast to the photosynthetic machinery of Cfx.

aurantiacus, the atomic-resolution structures for LH2 and

RC of the purple bacteria are available. Therefore, we first

performed SANS for the LH2 and RC of the purple bacte-

rium Rb. sphaeroides and compared their solution confor-

mation obtained by SANS with the crystal structures for

the LH2 of Rps. acidophila (PDB ID: 1NKZ) (36) and the

RC of Rb. sphaeroides (PDB ID: 1AIJ) (32). Fig. 2, A

(SANS data) and B (Guinier fits), show SANS measure-

ments for LH2-LDAO mixtures of Rb. sphaeroides in 0,

10, 20, 45, 80, and 100% D2O, and Fig. 2 E shows the

SANS data and Guinier fit (inset) for RC-LDAO mixtures

in 100% D2O. The weakest scattering for LH2-LDAO

mixtures was acquired in 20% D2O, which can be treated

as an average matching point between the matching points

for the LH2 peptides (in 45% D2O) and bound LDAO

micelles and cofactors, i.e., BChls and carotenoids (in

5–10% D2O). In addition, bound LDAO micelles and cofac-

tors in the LH2-LDAO mixtures contributed to stronger

scattering intensity in 45% D2O than in 10% D2O.

Table 1 and Fig. 2 C show a larger radius of gyration, Rg,

and longest distance within the particle, Dmax, for LH2-

LDAO mixtures in 45% D2O than in 10% D2O, indicating

that the LH2 is surrounded by LDAO micelles. The Dmax-

values were obtained by several GNOM fits (37) with

various Rmax-values input to acquire the most reasonable

particle distance distribution function, P(r), because an

inappropriate value of Dmax generates a rather unreasonable

P(r) distribution. The GNOM program is an indirect Fourier

transform (IFT) method, and the Rg- and Dmax-values deter-

mined by GNOM make use of the entire scattering curve

and are less sensitive to intermolecular interactions (see

the Supporting Material). Also, the larger Rg-value (36 5

2 Å) estimated for RC-LDAO mixtures in 100% D2O

compared to the value calculated from the crystal structure

of Rb. sphaeroides (33.2 Å) with the program CRYSON

(38) suggest that LDAO micelles occupy the periphery of

the LH2. Assuming that the thickness of the LH2 particle

is ~47 Å (estimated from the crystal structure) (36), the

ring diameter for LH2-LDAO mixtures in 45% D2O and

10% D2O is ~105 Å (Dmax, 115 5 5 Å) and ~83 Å (Dmax,

95 5 5 Å), respectively. Thus, an ~11 Å detergent layer

surrounding the LH2, with the increase of the total ring

size by ~22 Å, was suggested by SANS. The larger error

for fitting the Rg-value for LH2-LDAO mixtures in 0%

and 10%D2O is due to weaker scattering. Fig. 2D illustrates

that the predicted SANS curve calculated from the crystal

structure of the LH2 of Rps. acidophila is comparable to

the data collected for LH2-LDAO mixtures of Rb. sphaer-

oides in 10% D2O. Together with similar experimental

and predicted Rg-values (Table 1) and no upturn curvature

for the data of LH2-LDAO mixtures in 100% and 80%

D2O (Fig. 2 A), our studies suggest a similar overall confor-

mation for the LH2 of Rb. sphaeroides in solution and Rps.

acidophila in the reported crystal structure (36) LH2 aggre-

gates larger than the (ab)9 oligomer reported previously

(39,40) cannot be detected in our studies.

Further, the reduced frequency of both shorter and longer

pair distances in the 10% D2O data as compared to the 45%

D2O data (Fig. 2 C) suggests a hollow structure for LH2

(reduced frequency of the shorter pair distance) and LDAO

micelles occupying the central cavity (increased frequency

of the shorter pair distance) as well as surrounding the

LH2 barrel (increased frequency of the larger pair distance).
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FIGURE 2 SANS for the LH2 and RC of Rb. sphaeroides. (A) SANS data

for LH2-LDAOmixtures in 0, 10, 20, 45, 80, and 100%D2O. (B) The Guin-

ier fit for LH2-LDAO mixtures in different concentrations of D2O. Data are

shifted along the y axis for comparison. (C) The normalized P(r) profile for

LH2-LDAO mixtures in 45% (blue curve) and 10% D2O (red curve). (D)

The SANS data for LH2-LDAO mixtures in 10% D2O (") and the predicted

SANS pattern (red line) calculated from the crystal structure for LH2 of

Rps. acidophila. (E) The SANS data and Guinier fit (inset) for RC-

LDAO mixtures in 100% D2O.
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Measurements of the B808-866 complex and RC

of Cfx. aurantiacus

SANS with contrast variation was performed at 0, 17, 40,

80, and 100% D2O for B808-866-bOG mixtures (Fig. 3 A),

and at 5, 40, and 100% D2O for RC-LDAO mixtures

(Fig. S2 A). The overall size of the B808-866-bOG and

RC-LDAO complex can be estimated from SANS in

100% D2O, in which the highest scattering contrast can be

acquired. With the Guinier fit for the data in the low-q range

(q < 0.02 Å 1), the Rg-value is 605 1 Å (Rg � qmax ¼ 0.8)

for B808-866-bOG mixtures (Fig. 3 B) and 325 1 Å (Rg �

qmax ¼ 0.7) for RC-LDAO mixtures (Fig. S2 B). Similar Rg-

values for these biological complexes in 100% D2O were

also acquired with the GNOM fits (Table 2).

To obtain more structural information about the B808-

866 complex and RC of Cfx. aurantiacus, we analyzed

SANS data for B808-866-bOG and RC-LDAO mixtures at

the contrast point of bOG micelles (17% D2O) and LDAO

micelles (5–10% D2O). The Rg-value for B808-866-bOG

mixtures in 17% D2O is 52 5 11 Å using the Guinier

approximation (Fig. 3 C) and 50 5 5 Å using the program

GNOM (37) (Table 1). The Rg-value for RC-LDAO mix-

tures in 5% D2O is 265 10 Å using the Guinier approxima-

tion and 23 5 4 Å using the IFT approach (Table 2).

Data analysis of B808-866-bOG mixtures

The maximal diameter of the LH1 of R. rubrum has been

reported to be 116 Å by EM (41), and Table 2 shows that

the predicted Dmax for the LH1 of Rps. palustris from the

crystal structure is 124 5 2 Å. As the thickness of the

LH1 particle in the reported crystal structure (23) is ~47 Å,

the diameter for the LH1 ring is estimated to be ~115 Å,

which is similar to the data reported by EM. The Dmax

TABLE 1 Structural parameters acquired from SANS for the LH2 and RC of Rb. sphaeroides and estimated from the crystal

structures for the RC and LH2 of the purple bacteria

Samples Rg (Guinier) Rg (CRYSON) Rg (GNOM) Dmax (GNOM)

LH2-LDAO (Rb. sphaeroides)

in 0% D2O 38 5 11 Å 39 5 3 Å 110 5 5 Å

in 10% D2O 30 5 14 Å 35 5 5 Å 95 5 5 Å

in 20% D2O ND* NDa NDa

in 45% D2O 40 5 4 Å 38 5 3 Å 115 5 5 Å

in 80% D2O 35 5 2 Å 37 5 1 Å 115 5 2 Å

in 100% D2O 36 5 2 Å 37 5 1 Å 115 5 3 Å

LH2 (PDB ID: 1NKZ) Rps. acidophila 33.2 Å 34 5 1 Å 90 5 2 Å

RC-LDAO (Rb. sphaeroides) in 100% D2O 38 5 2 Å 355 1 Å 95 5 5 Å

RC (Rb. Sphaeroides) (PDB ID: 1AIJ) 29.4 Å 30 5 0.4 Å 85 5 2 Å

*ND, a reasonable value cannot be obtained due to weak signal.

FIGURE 3 SANS for the B808-866 complex of

Cfx. aurantiacus. (A) The SANS data for B808-

866-bOG mixtures in 0, 17, 40, 80, and 100%

D2O. (B) The SANS data and Guinier analysis

(inset) for B808-866-bOG mixtures in 100% D2O.

(C) The Guinier fit for B808-866-bOG mixtures in

different concentrations of D2O. (D) The normal-

ized P(r) profile for B808-866-bOG mixtures in

100% (black curve) and 17% D2O (red curve).
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estimated from SANS for B808-866-bOG mixtures in 17%

D2O, where only B808-866 polypeptides contribute to the

scattering profile, is 140 5 5 Å, and the diameter for the

B808-866 complex is estimated to be 132 5 5 Å. Similar

to the P(r) profile obtained for the LH2 of Rb. sphaeroides

(Fig. 2 C), a hollow structure is also suggested for the

B808-866 complex as reduced frequency of the shorter

pair distance in the P(r) profile (Fig. 3 D, red curve). The

Guinier fit for the scattering data (q < 0.017 Å 1 for

B808-866-bOG mixtures in 0, 17, 40, 80, and 100% D2O)

is shown in Fig. 3 C. The Rg-value for the B808-866

complex determined from SANS is somewhat larger than

the LH1 estimated from the crystal structure of the LH1-

RC cocomplex: 47.2 Å (Table 2). These results suggest

that the ring size of the B808-866 complex is a bit larger

than that of the LH1. Further, the Dmax of B808-866-bOG

mixtures in 100% D2O is estimated to be 155 5 5 Å

(Fig. 3 D), and the diameter for the B808-866 complex

with bound micelles is ~148 Å. These results indicate that

the overall size of B808-866-bOG mixtures is increased

with the micelle bound, and the detergent layer increases

~15 Å of the overall size of the B808-866-bOG mixtures,

in similarity to the detergent layer reported for the spinach

LHC II-bOG complex (10). Thus it is possible to identify

the thickness of the micelle layer using contrast variation,

although the size of bound micelles cannot be accurately

calculated due to the weak signal/noise ratio of the scat-

tering signal in 40% D2O. Also, a peak at the shorter pair

distance (~30 Å) in the P(r) profile of B808-866-bOG

mixtures in 100% D2O (Fig. 3D, black curve) may be attrib-

uted to the presence of free bOGmicelles in B808-866-bOG

mixtures, although the detergent included in the samples re-

ported here was prepared around its CMC. Additionally,

assuming free bOG micelles as a polydisperse system of

cylinders, the Rg (22–23 Å) and maximal length of free

bOG micelles (0.8%) are estimated to be smaller than those

of the bound micelles (Table S1).

To further investigate the particle size of B808-866-bOG

mixtures, we employed DLS in addition to SANS. SANS,

via elastic coherent neutron scattering, and DLS, via quasi-

elastic light scattering, have been used to investigate poly-

mer-surfactant interactions (42,43). Although both SANS

and DLS can probe the size of the particles, different

approaches are employed to acquire the information. The

particle size estimated fromSANS is generated fromneutrons

interacting with nuclei in the particle, whereas the hydrody-

namic diameter (d(H)) estimated by DLS refers to how

a particle diffuses within the medium, i.e., the translational

diffusion coefficient. The translational diffusion coefficient

depends not only on the size of the particle core, but also on

any surface structure, as well as the concentration and type

of ions in the medium. Similar temperatures (24–25#C)

were used for both SANS and DLS. Whereas 1–2 mg/mL

B808-866-bOGmixtureswere used in SANS (Fig. 3), a lower

concentration of samples (0.2mg/L)was used inDLS. Fig. S1

shows the average d(H) of free bOGmicelles and B808-866-

bOG mixtures measured by DLS. The d(H) of B808-866-

bOG mixtures was estimated to be 140 5 10 Å by DLS,

and Dmax of the mixtures was 155 5 5 Å as estimated

by SANS. Also, the d(H) of free bOG micelles (0.8%) is

~50 Å by both DLS and SANS (Fig. S1 and Table S1), and

the d(H) from our measurements is in agreement with the re-

ported size of free bOG micelles (14,34).

Data analyses of RC-LDAO mixtures

Fig. S2 B shows the Guinier fit for the scattering data (q <

0.02 Å 1 for RC-LDAO mixtures in 5, 40, and 100% D2O)

TABLE 2 Structural parameters acquired from SANS for Cfx. aurantiacus and estimated from the crystal structure for the RC and

LH1 of Rps. palustris

Samples Rg (Guinier)

Rc (modified

Guinier) Rg (CRYSON) Rg (GNOM) Dmax (GNOM)

B808-866-bOG (Cfx. aurantiacu)

in 100% D2O 60 5 1 Å 56 5 1 Å 155 5 5 Å

in 80% D2O 54 5 1 Å 55 5 1 Å 155 5 5 Å

in 40% D2O 82 5 30 Å 65 5 10 Å 165 5 10 Å

in 17% D2O 52 5 6 Å 50 5 2 Å 140 5 5 Å

in 0% D2O 69 5 20 Å 60 5 8 Å 160 5 10 Å

free bOG (in 100% D2O) 23 5 1 Å 22 5 1 Å 70 5 2.5 Å

LH1 (PDB ID: 1PYH) (Rps. palustris) 47.2 Å 47.4 Å 124 5 2 Å

RC-LDAO (Cfx.aurantiacus)

in 100% D2O 32 5 1 Å 28 5 1 Å 75 5 5 Å

in 40% D2O 28 5 2 Å 26 5 1 Å 70 5 5 Å

in 5% D2O 26 5 10 Å 23 5 5 Å 65 5 5 Å

free LDAO (in 100% D2O) 25 5 3 Å 26 5 1 Å 75 5 3 Å

RC (PDB ID: 1PYH) (Rps. palustris) 29.7 Å (or 27.1 Å

w/o H-subunit)

29.8 Å (or 27.2 Å

w/o H-subunit)

87 5 2 Å

(or 80 5 2 Å

w/o H-subunit)

Chlorosome (in 100% D2O)

(Cfx. aurantiacus)

196 5 2 Å,

296 5 6 Å

242 5 2 Å 785 5 5 Å
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and a larger error for estimating the Rg-value for RC-

LDAO mixture in 5% D2O (Table 2) that is due to weak

scattering. Fig. S2 C shows that the shape in 100% D2O

data (black curve) has a maximum in the P(r) profile

toward smaller distances and a somewhat narrow tail, as

expected for a slightly elongated and cylindrical particle

as shown in the crystal structure for RC of the purple

bacteria (23,32). The P(r) profile in the 40% D2O data

(blue curve) has a bell-shaped curve, as expected for an

isometric (or spherical) particle, and has a maximum at

larger pair distances than the P(r) profile in 100% D2O

data. It is possible that LDAO micelles do not conform

to the cylindrical shape of the RC. Also, the Dmax-value is

larger for RC-LDAO mixtures in 40% D2O (matching pro-

tein scattering) than in 5% D2O (matching LDAO micelles

scattering; Table 2), indicating that LDAO micelles are

wrapped around the RC in RC-LDAO mixtures. Using

the atomic coordinates for the LH1-RC core complex of

Rps. palustris (PDB ID: 1PYH) (23) and the RC of Rb.

sphaeroides (PDB ID: 1AIJ) (32), the Rg-values for the

RC of Rps. palustris and Rb. sphaeroides are estimated

to be 29.7 Å (Table 1) and 29.4 Å (Table 2), respectively.

Our studies indicate a smaller RC of Cfx. aurantiacus than

the purple bacteria (Table 2 and Fig. S2 D), consistent with

the biochemical characterization that only the L and M

subunits, not the H subunit, are identified in the RC of

Cfx. aurantiacus (30). Moreover, the Rg- and Dmax-values

for the RC of Cfx. aurantiacus determined from our

SANS measurements are smaller than the values calculated

from the crystal structure for the RC of Rps. palustris

without the H subunit (Table 2).

The chlorosome is a specialized lipid body with

a rod-like shape

Most of the available structural information about the

chlorosome has been provided by cryo-EM, AFM, FT-

IR, fluorescence, solid-state NMR, SAXS, and molecular

modeling (45–48). It has been generally accepted that the

majority of the mass of the chlorosome is BChls, and other

components, such as proteins in the outer envelope (a mono-

layer lipid membrane) of the chlorosome, are proportionally

minor. Here, we report SANS for the chlorosome with

contrast points in 0, 25, 40, 60, 80, and 100% D2O. Note

that previous SANS studies for isolated BChls were per-

formed in (perdeuterated) organic solvents or D2O only

(14–16), whereas our studies for the intact chlorosome

were measured in the biological buffer (20 mM Tris-HCl

buffer at pH 8.0). Fig. 4 A shows that scattering curves in

the buffer with different D2O concentrations are similar,

suggesting that the chlorosome is rather uniform in compo-

sition. Further, the cross-sectional radius (Rc) calculated

from scattering data in different D2O buffer is also compa-

rable (Fig. S3).

The lowest scattering intensity of the chlorosome was

obtained in 25% D2O, which is close to the contrast point

of lipids (Fig. 4 B). The results suggest that the chlorosome

is a lipid body, and that the self-assembly of BChls (the

major components of the chlorosome) is lipid-like. The

lipid property of BChls can be attributed to the C173-hydro-

phobic long-chain ester. The data analysis shown in Fig. 4, C

and D, was performed for the samples in 100% D2O, in

which the maximum scattering signal was obtained. Our

studies suggest that the scattering signals in the low-q region

FIGURE 4 SANS for the chlorosome of Cfx.

aurantiacus. (A) The SANS data for the chloro-

some in 0, 25, 40, 60, 80, and 100% D2O at

20 mM Tris buffer at pH 8.0. (B) The total scat-

tering intensity (I(0)) plot for the chlorosome in

different concentrations of D2O. (C) The scattering

data and Guinier analysis of the chlorosome in

100% D2O with two fits shown (inset). (D) The

P(r) profile for the chlorosome in 100% D2O.
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(0.0009 < q < 0.01 Å 1) can best be interpreted using

a modified Guinier analysis for rod-like particles, presum-

ably composed of the self-assembly of BChls, with the Rc

estimated from the modified Guinier fits (Fig. 4 C, inset):

196 5 2 Å with Rc � qmax ~ 1.1 and 296 5 6 Å with

Rc � qmax ~ 1.0. The Dmax is estimated to be 785 5 5 Å

(Fig. 4 D). In contrast, the scattering data cannot be reason-

ably fitted by the Guinier fit for a compact particle or for

a platelet-like particle (Fig. S4). Further, an upturned curva-

ture was detected in the very low-q range (~0.001–0.002

Å 1) of the modified Guinier plot (Fig. 4 C, inset), suggest-

ing the presence of very large particles in solution whose

size cannot be accurately estimated. Together, the two

different modified Guinier fits for the chlorosome may be

interpreted as indicating the presence of two major popula-

tions of the chlorosome in solution: one in a monomeric

form with Rc ~ 200 Å, and the other likely in a dimeric

form with Rc ~ 300 Å.

DISCUSSION

Two general types of LHCs in photosynthetic organisms

are the protein-pigment complexes, which include various

LHCs in higher plants, algae, and bacteria, and the pig-

ment-pigment complex, i.e., the chlorosome. Both types

of LHCs—the protein-pigment complex (the B808-866

complex) and the pigment-pigment complex (the chloro-

some)—have been identified in Cfx. aurantiacus. In this

study, we performed SANS to elucidate the photosystem

of Cfx. aurantiacus and the purple bacteria, and investigated

a variety of LHCs, including the LH2 of the purple bacteria,

the chlorosome and the B808-866 complex of Cfx. aurantia-

cus, and the RC from the purple bacteria and Cfx. aurantia-

cus. The LHC and RC of the purple bacteria have been

investigated extensively, and LH1 is reported to be a large

(ab)16 cyclic structure that surrounds the RC in several

purple bacteria, including Rps. palustris (23), Rps. viridis

(49), and Rhodospirillum rubrum (41,50,51). Earlier studies

indicated that the B808-866 complex, containing a 5.6 kDa

a-subunit and a 4.8 kDa b-subunit, has spectral features

similar to those of LH2 (shown in Fig. S5), but higher

sequence similarity to LH1 than to LH2 (52,53). Further,

a ring-like structure for the B808-866-bOG complex with

a diameter of 22 nm (220 Å) was estimated previously by

EM, and a hydrodynamic radius of 12 nm was estimated

by DLS (19).

Our SANS and DLS data indicate somewhat different

results. In 100% D2O, in which the bound micelle molecules

were taken into consideration for size estimation, SANS

estimated that Dmax for B808-866-bOG mixtures is 155 5

5 Å (Table 2). Further, with contrast variation, Rg is 51 5

9 Å and Dmax is 140 5 5 Å for B808-866-bOG mixtures

in 17% D2O, in which only peptide chains are visible.

Assuming a similar thickness of the LH1 and B808-866

particle (~47 Å based on the crystal structure of LH1)

(23), the ring diameter is 132 5 5 Å for the B808-866

complex and 115 5 2 Å for LH1 by calculating from the

values of Dmax. Further, a similar particle size of B808-

866-bOG mixtures was suggested by DLS (Table S1). The

B808-866 complex is estimated to be 15–20 Å larger than

the LH1 of Rps. palustris, but is significantly smaller (by

90 Å) than the previously reported value (220 Å). Although

more structural insights are required before we can under-

stand the assembly of the B808-866 complex, the somewhat

larger ring size compared to LH1 may be partially related to

the two types of BChls (B808 and B866) in the B808-866

complex versus one group of BChls (B880) in LH1. It is

possible that the second group of BChls and/or the protein

scaffold lead to the larger ring size for the B808-866 com-

plex compared to LH1.

Because of certain differences in the intrinsic properties

between H2O and D2O, it is possible that the smaller size

of the B808-866 complex shown in our studies compared

to the previously reported value is due to the presence of

D2O in SANS. We compared scattering parameters obtained

from our studies for protein-micelle mixtures in different

ratios of D2O, and Table 1 shows similar values of Rg and

Dmax for LH2-LDAO mixtures in D2O versus in H2O.

Although the scattering signal collected for B808-866-

bOG mixtures in H2O was not strong enough to obtain reli-

able structural parameters, to our knowledge no SANS or

other structural studies of biomolecules and protein-micelle

complexes have reported a twofold size decrease in D2O

versus H2O. Alternatively, it has been reported that D2O

stabilizes hydrophobic interactions and favors aggregation

for some proteins (44). Thus, we consider that our experi-

mental results indicating a similar particle size for the

B808-866 complex of Cfx. aurantiacus and the LH1 of

Rps. palustris are unlikely due to the presence of D2O in

our measurements.

Fig. 5 A shows that the volume of the reconstructed model

for the B808-866 complex of Cfx. aurantiacus derived from

the SANS data collected for B808-866-bOG mixtures in

17% D2O is reasonably superimposed on the atomic-resolu-

tion structure for the LH1 of Rps. palustris, and Fig. 5 B

shows the predicted scattering pattern calculated from the

reconstructed model in Fig. 5 A and the crystal structure

for the LH1 of Rps. palustris. The experimental data for

B808-866-bOG mixtures in 17% D2O is better fitted by

the predicted SANS profile for the reconstructed model of

the B808-866 complex (red curve) than for the crystal struc-

ture of LH1 (blue curve), and the predicted SANS profiles

also suggest that the B808-866 complex is slightly larger

than LH1. Comparisons of SANS for the RC of Cfx. auran-

tiacus and the crystal structure for the RC of Rps. palustris

are shown in Fig. 5 C. The relatively weak features found in

the reconstructed model shown in Fig. 5 C can be attributed

to the weak signal/noise ratio of the scattering signal for the

RC of Cfx. aurantiacus in 5% D2O (Fig. S2 A), whereas the

volume of the reconstructed model for the RC of Cfx.
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aurantiacus generated from data collected for RC-LDAO

mixtures in 5% D2O is roughly comparable to the crystal

structure for the RC of Rps. palustris. Fig. 5 D shows that

the data collected for RC-LDAO mixtures in 5% D2O can

be better fitted by the predicted SANS profile for the recon-

structed model (red curve) than the crystal structure for the

RC of Rps. palustris with (blue curve) or without (green

curve) the H-subunit, and suggests that the RC of Cfx. aur-

antiacus is smaller than the crystal structure for the RC of

Rps. palustris (with or without the H-subunit attached).

The results indicate that a more compact complex for the

RC of Cfx. aurantiacus is formed via the assembly of

the L- and M-subunits. Overall, our results suggest that

the B808-866 complex of Cfx. aurantiacus is comparable

in size to the LH1 of Rps. palustris (the B808-866 complex

is ~10% larger), whereas the RC of Cfx. aurantiacus is

~20% smaller than the RC of Rps. palustris without the

H-subunit (Table 2).

Comparing our results with previous SANS studies,

Worcester et al. (15,16) showed that isolated BChls in

organic solvents form cylindrical micelles with Rc ¼ 50–

100 Å, and Wang et al. (14) demonstrated that isolated

BChl c and BChl a form dimers with Rg ¼ 17.0 5 0.5 Å

and 16.5 5 0.5 Å, respectively. Additionally, these authors

reported the presence of large aggregates in isolated BChls

(14–16), consistent with our observations of much larger

chlorosome particles in solution (Fig. 4 C). Further, the Rc

of the chlorosome estimated by SANS is similar to the

size reported by cryo-EM and AFM (54).

The structural information can be used to gain further

insights into the RC-B808-866 cocomplex of Cfx. aurantia-

cus and detailed structural information about the chloro-

some, including pigment arrangements. Considering the

uniqueness of the chlorosome among antenna LHCs, the

more-detailed structural information provided by SANS

and other biophysical approaches will be of great value.

For example, a lamellar shape in the BChls packing in

the chlorosome of Cfx. aurantiacus and some green bac-

teria was recently suggested by SAXS (45,55), and it is

essential to acquire detailed structural information about

the chlorosome using multiple biophysical and biochemical

approaches.

CONCLUSIONS

In this study, we employed SANS to obtain structural

insights into the chlorosome and the building block for the

B808-866 complex and RC of Cfx. aurantiacus, as well as

the LH2 and RC of the purple bacterium Rb. sphaeroides.

The latter was used to compare the structural information

obtained by SANS measurements and reported crystal struc-

tures. Our studies indicate that the chlorosome is a rod-

shaped lipid body, and suggest that two populations of the

chlorosomes are present in solution. Further, SANS and

DLS indicate that the size and conformation of the B808-

866 complex of Cfx. aurantiacus and the LH1 of the purple

bacterium Rps. palustris are comparable, with the B808-866

complex being ~10% larger than the LH1. Consistent with

the H-subunit’s absence in the RC of Cfx. aurantiacus, our

studies indicate that the RC of Cfx. aurantiacus is ~20%

smaller than the RC from the purple bacteria without the

H-subunit attached. As B808-866/RC and LH1/RC are

roughly comparable in size, the overall arrangement for the

RC-B808-866 cocomplex of Cfx. aurantiacus and the RC-

LH1 core complex of Rps. palustris is probably arranged

in a similar way. To our knowledge, this is the first SANS

report regarding the overall photosynthetic machinery of

Cfx. aurantiacus.

FIGURE 5 Comparisons of the SANS studies for B808-866 complex

and RC of Cfx. aurantiacus and the crystal structure for LH1 and RC of

Rps. palustris (PDB ID: 1PYH). (A) The reconstructed model for the

B808-866 complex and the crystal structure for the LH1 of Rps. palustris.

(C) The reconstructed model for the RC of Cfx. aurantiacus and the

crystal structure for the RC of Rps. palustris without the H-subunit. (B)

The predicted SANS patterns calculated from the reconstructed model

for the B808-866 complex and the crystal structure for the LH1 fit the

data for B808-866-bOG mixtures in 17% D2O. (D) The predicted

SANS patterns calculated from the reconstructed model for the RC of

Cfx. aurantiacus and the crystal structure for the RC of Rps. palustris

with or without the H-subunit fit the data for RC-LDAO mixtures in 5%

D2O.
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SUPPORTING MATERIAL

One table, five figures, detailed information about SANS data analysis and

modeling, description for hydrodynamic diameter size measurement, and

additional references are available at http://www.biophysj.org/biophysj/

supplemental/S0006-3495(10)01041-6.
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