EPICS DeviceNet Driver Description

June 26, 2000

D. N. Nypaver & R. E. Battle

1.
Introduction

A DeviceNet driver that communicates to a host computer was developed that implements parts the Open DeviceNet Vendor Association (ODVA) standard (polling and explicit messaging). The DeviceNet driver communicates to DeviceNet through a VME card sold by SST Corp. The host software is an adapted version of the SST Windows software that was provided with the SST DeviceNet card. The VME DeviceNet card (SST 5136-DN-VME) contains programmable integrated circuits that must be loaded with the DeviceNet protocol when the card is first powered on. The programmable IC on the board must be reloaded with the DeviceNet software if power is removed from the board. This firmware on the SST board performs all the DeviceNet communication protocols, and the host computer issues commands to and receives responses from the DeviceNet fieldbus through this firmware. The interface between the host computer and the DeviceNet firmware is shared memory. The DeviceNet driver described in this paper uses this shared memory to communicate to modules connected to the DeviceNet card through the DeviceNet fieldbus. The host computer software was adapted to connect EPICS to the SST DeviceNet card. The EPICS interface allows a user to add, delete, configure, and monitor DeviceNet modules that are connected to the fieldbus. The EPICS configuration software also reports errors in the configuration or fieldbus operation.

2.
DeviceNet Startup and Operation

On startup of the driver host software the EPICS/VxWorks DeviceNet driver initializes the SST 5136-DN-VME control registers, defines interrupts, and loads and initializes the application memory map. After initialization, the driver reads stored data to configure and add initial devices to the DeviceNet network. Once the host configures the fieldbus, the host software is used to put the scanner online, at which time it begins scanning devices that were previously added to the network.

EPICS requires that records or data types be defined in order for data to be passed from IOC drivers to the EPICS database. This exchange of data is done through EPICS channel access. Records that are defined for the DeviceNet driver include binary in, binary out, mbbi, mbbo, long in and long out. Thus data of these types can be sent and received to devices on the DeviceNet network.

EPICS tools were used to communicate with the DeviceNet driver running on the IOC. The EPICS database tool, gdct, was used to define channel access records for data and flags needed for communication with the DeviceNet network. State Notation Language programs that load and run on the IOC at boot time call driver functions that send and retrieve commands, data, and communication flags to the DeviceNet devices. The EPICS display tool, MEDM, displays the data and allows the users to interact with the DeviceNet driver by setting software flags and inputting data. After the user configures the DeviceNet modules, the driver sets the software flags automatically without user intervention.

Through the MEDM display and the EPICS database, the user can monitor and configure the devices on the DeviceNet network. The EPICS display and database send information to the driver that it uses to add, delete, edit, and view configuration of devices connected to the DeviceNet fieldbus. The EPICS MEDM display monitors device status and enables users to read and write explicit or polled data to the devices on the DeviceNet network. The users can also start or stop the scan, put the scanner online, or take the scanner offline through the MEDM displays.

3. DeviceNet Configuration

To add a device to the DeviceNet fieldbus configuration, the user presses the ADD Device button on the main MEDM display (Fig. 1 of Appendix A). The user inputs the device MAC ID on the MEDM screen (the module MAC ID must also be set by a switch on the DeviceNet module). The user must also set the input and output byte sizes and the connection flag information (Explicit or Polled) as shown in Fig. 5 of Appendix A. The remaining configuration information shown in Fig. 6 of Appendix A is retrieved from the device by the DeviceNet driver.

4. Current Status

In addition to the SST scanner, an Allen Bradley 1794-ADN Flex I/O adapter with a discrete output module was added to the DeviceNet fieldbus. The adapter module allows up to eight modules to be attached, but only one was connected for this development effort. The adapter supports both explicit and polled messaging, which were tested successfully using the EPICS driver communicating to these devices. Some of the EPICS screens shown in Attachment A would have to be modified as other devices are added to the network, but these new screens would use the DeviceNet driver. Communication to the adapter and its discrete output module was accomplished successfully.

5. Summary and Conclusions

The explicit, polled and polled/explicit have been tested and shown to work on the Flex I/O and discrete output module. Bit-strobed and strobed/explicit messaging have not been implemented. Better mechanisms also needed to be implemented to allow the user the ability to store DeviceNet network configuration from the MEDM display. More rigorous and extensive testing needs to be done to fully test the robustness of the driver and it’s ability to adequately configure, monitor and interact with any type of DeviceNet compatible device connected to the DeviceNet network. The MEDM screens developed for this demonstration and testing are shown in Attachment A.

Attachment A

EPICS DeviceNet Configuration and Monitoring Display Screens

The main DeviceNet MEDM screen is shown in Fig. 1. It includes buttons for the user to interact with the DeviceNet driver running on the IOC. This screen includes a status indicator for the DeviceNet scanner and the driver. The buttons Add Device, View Device, Edit Device, Delete Device, Device Status, Read Data, Write Data, Send Exp Msg, Read Exp Msg on this screen open other screens. The button Clear Error String does not open another screen, but it clears the error message, if there is one, that is written on the main screen. The buttons Offline and Online put the scanner on or off line, which is a DeviceNet mode. The indicator is green for online and red for offline. The scanner must be online before it can be started by the Start/Stop Scan button that puts the scanner in scan mode acquiring data. Quit closes the MEDM display.

[image: image1.jpg]DNetComm.adl

Add Device Read Data
View Device Write Data.
Edit Device Send Exp Msg
Delete Device | Read Exp Msg
Device Status Gear Eror String

Scanner Online/0ffline Start/Stop Scan

. offin . Stop
Start

Online

auir

Fig. 1. DeviceNet Main Screen

The screen opened by the Add Device button on the main screen is shown in Fig. 2. On this screen the user sets the device ID to agree with the ID set by switches on the device. The user also sets the data input size

[image: image2.jpg]ReadExpMsg.adl

Device Data —1794-ADN Flex 1/0
Hew O0x17 0531 0x37 0x39 0x34 0x2d Oxdl Oxdd Oxde 0532 OxdB OxBc
0465 0x78 0x32 Oxd9 02F Ondf

Fig. 2. Screen to add a device to the DeviceNet fieldbus.

and output size in bytes. This data size information is included in the device documentation. Inputs and outputs are from the perspective of the scanner even when configuring a module. The Connection Flag button is a dropdown box for selecting the method of communication with the device. These include explicit, polled, explicit/polled, and bit-strobed. The modules that have been tested include support only explicit, polled, and explicit/polled. This screen does not support configuration of input 2 and output 2 fields. These would be needed for devices that communicate more data than can be contained in input 1 or output 1 registers. Enter stores the data; Return closes this screen.

[image: image3.jpg]AddDevice.adl

[

Inputl Size

oottt Size O

Fig. 3. View device screen that is selected from the main screen.

The view device screen is a diagnostic screen that would be used only by a knowledgeable DeviceNet user. The fields on this screen are explained in the SST scanner documentation.

[image: image4.jpg]7 ViewDevice.adl

Device HAC D (0-63) 5
Device Vendor TD 1
Dovice Tupe 12
Device Product Code 1
Comnection Flags 3
Explicit Hog Buffer Size (bytes) w72
Offset to Explicit g Buffer 4630
1/0 Connection 1 Output Size 2
OFfsot to 1/0 Connection 1 Output Data 4740
/0 Connection 1 Tnput Size 4
Ofset to 1/0 Connection 1 Tnput Data a760
1/0 Connection 2 Output Size 1
Offsot to 1/0 Connection 2 Output Data 8704
1/0 Connection 2 Tnput Size 2
Ofset to 1/0 Connection 2 Input Data 8720

Fig. 4. Screen to modify device parameters.

After a device has been added to the DeviceNet fieldbus, its parameters can be modified with this screen. These parameters are the same as those on the Add Device screen.

[image: image5.jpg]EditDevice.ad|

.

TInputl Size

Outputd Size O

Connection Flag -

Fig. 5. Screen to delete a device from the DeviceNet fieldbus.

This screen is opened from the main screen, and it is used to remove a device that was previously added to the fieldbus. The button List of Devices lists the ID of the devices currently on the fieldbus. To remove one of them, select the ID with the device ID buttons and press Delete Device to remove it. Return closes this screen.

[image: image6.jpg]DelDevice.adl

Fig. 6. Device status screen opened from the main screen.

This screen can be used to list the devices connected to the fieldbus, and it provides the status of the selected device. The status can be active or idle. If the scanner is idle, it may not have been started, which can be done from the main screen. A device that is idle may not be configured correctly. The Server Status function has not been implemented or tested in this software.

[image: image7.jpg]

Fig. 7. Read data screen displays the data read from a device.

This screen displays the polled data read from the selected device on the fieldbus. The data shown on this screen are in hex because the device is a discrete input module. The first word, 0xfe, is a status word for the adapter, and the second word is a status word for a discrete output module. The device manual describes the contents of the data that would be displayed on this screen.

[image: image8.jpg]ReadMsg.adl

Device I0

Device Data Oufe

Fig. 8. Write polled data to a device on the fieldbus.

This screen is an example of writing data to a device using polling on the fieldbus. In this example, device ID 5 is a discrete output module that accepts one input. Writing a 1 to the device will turn on output number 1. Press the button Write Device Data to send the data to the module. This data would be written to the device each time the module is polled.

[image: image9.jpg]

Fig. 9. Screen used to send an explicit message to a device.

This screen is an example of how explicit messages are sent to a device on the fieldbus. It is obvious from this screen that the user must be familiar with the structures and codes used by DeviceNet send explicit messages using this screen. Details of this data are available in the SST documentation for the scanner. The response to this message is shown on the screen in Fig. 10.

[image: image10.jpg]writeExpMsg.adl

fevte= -

Service Data Size [

Service

Class 10

Instance I0

Service Data

Fig. 10. Screen that displays the device response to an explicit message.

This screen prints the response to the explicit message that was sent on the screen in Fig. 9. The ASCII text is printed, and the ASCII hex codes are printed also because some of the explicit message responses include unprintable ASCII. Press the Read Explicit Data button to read the message stored in the buffer.

