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The three most common beam bunch shape representations are Gaussian, parabolic, and 
cosine-squared. A Gaussian shape is the easiest to represent in both the time and frequency domains. In 
general, this is the most appropriate shape for use with electron beams. For ion beams in linacs, 
parabolic appears to be the best representation.  For high energy proton beams in circular rings, 
cosine-squared appears to be the preferred representation.

These three bunch shapes, all normalized to the same rms widths, are compared in both the time and 
frequency domains.  In all three cases, analytic forms for the Fourier transform are used [1]. The time 
domain profiles are calculated using the Fourier cosine series expansion.

The Fourier series expansion representation of temporal profiles is perhaps most useful when frequency 
dependent effects must be calculated. For example the frequency response of pickups (e.g., BPMs or 
BCMs), correction for the low-beta effect (the "Bessel factor"), and frequency-dependent attenuation and 
dispersion in coax cables. Several examples are included.

When all three bunch profiles are normalized to the same rms width, the spectral power densities in the 
frequency domain are nearly identical for short bunches. For longer bunches, the spectral power density 
depends on both the rms width and the specific bunch profile.
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pulse train of 402.5 MHz Gaussian bunches
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Temporal profile of 20-ps rms width Gaussian bunch
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================ Parabolic bunch distribution=======================

Full width at base = 4.47 rms widths,  s= rms width
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⋅:= Fourier amplitude factor for parabolic bunch
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⋅+:= temporal spectrum of parabolic bunch

pulse train of parabolic bunches
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temporal profile of a 20-ps rms width parabolic bunch
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============== Cosine squared distribution ==============

b n s,( ) 2 n⋅ 5.532⋅ 10
12−

⋅ s⋅ f⋅:= full width at base = 5.532 rms widths, s= rms width

Fourier amplitude factor 
for cosine-squared 
bunch
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temporal spectrum of cosine-squared bunch
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pulse train of cosine-squared bunches
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temporal profile of a 20-ps rms width cosine-squared bunch
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Comparison of all three bunch shapes with the same rms width (20 ps)
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Comparison of spectral power densities up to 5 GHz for various rms bunch widths

We now use the Fourier amplitude factors for the three bunch profiles to compare the spectral power 
densities up to 5 GHz.
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For short bunches (20 ps and 30 ps above), the spectral power density below 5 GHz is nearly 
independent of the bunch profile. For longer bunch lengths (50 ps and 100 ps below), the power density 
is very dependent on the bunch profile. For this reason, it is difficult to measure the bunch length of 
longer bunches using frequency-domain measurements, unless the bunch profile (e.g., Gaussian, 
parabolic, or cosine-squared) is known a priori. A complete spectral power density profile could 
determine both the bunch profile and the rms width.
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======== Example of distortion caused by the low beta effect =============

E 300:= MeV c 2.997924 10
10

⋅:= cm/sec

a 3.5:= half aperture of BPM (cm)

gam 1
E

939.28
+:=

beta*gamma
bgam gam

2
1−:=

I0(arg) is the modified Bessel function of 
order zero.AG2 t s,( ) 1 2
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For beta = 1, the beam signal is a TEM wave, that arrives at the observation point simultaneously with 
the beam bunch. For beams with beta < 1, the signals are spread out over z, and arrive at the 
observation point before, as well as after, the beam pulse.  Causality is not violated.
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============ Example of cable attenuation and dispersion =============

atten 5.0:= attenuation, dB per 100 meters at 402.5 MHz

alph n( )
atten

8.686
n⋅:= attenuation (nepers) and phase shift (radians) per 100 meters at harmonic 

n of 402.5 MHz

Gaussian pulse profile with cable attenuation and dispersion, after 100 meters of lossy coax.
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Because the attenuation (due to eddy currents in the conductors) in a coax cable is proportional to the 
square root of frequency, the dispersion at a particular frequency  (measured in radians) is numerically 
equal to the attenuation (measured in nepers). One neper, equivalent to 1/e of attenuation,  is equal to 
8.686 dB. This 1:1 relation between nepers and radians is true only when the frequency dependence is 

f1/2.
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============= parabolic ==================
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========= cosine squared ============

========== Ratios of full width at base to rms width for parabolic & cosine-squared distributions ===

[1]  R. Shafer, Proceedings of the 1989 Beam Instrumentation Workshop (BNL). See page 31.

===========================================================================
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note factor of 5 in gain of attenuated signal in plot

doublet with attenuation and dispersionAG5 t s,( ) AG3 t dt+ s,( ) AG3 t dt− s,( )−:=

doublet without attenuation and dispersionAG4 t s,( ) AG t dt+ s,( ) AG t dt− s,( )−:=

transit time, sec, for 5-cm long electrodedt 1.668 10
10−

×=dt
5

c
:=

============== Pulse doublet in 5 cm long BPM at beta = 1  ================
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