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Cholesterol in unusual places
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Abstract. Cholesterol is an essential component of mammalian cells, and is required for
building and maintaining cell membranes, regulating their fluidity, and possibly acting as an
antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been
suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from
cholesterol’s physiological roles, what is also becoming clear is its poor affinity for lipids with
unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it
forms rafts. We previously reported the location of cholesterol in membranes with varying
degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et a/
2006 Biochemistry 4S5, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed
of phosphatidylcholine (PC) molecules with a saturated acyl chain at the s»n-1 position or a
monounsaturated acyl chain at both s»n-1 and sn-2 positions, cholesterol was found in its much-
accepted  “upright”  position. However, in dipolyunsaturated 1,2-diarachidonyl
phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the
center of the bilayers. In further experiments, mixing 1-palmitoyl-2-oleoyl phosphatidylcholine
(16:0-18:1PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at
approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5
mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

1. Introduction

Polyunsaturated fatty acids (PUFAS) constitute a biologically influential group of molecules. High
levels, sometimes exceeding 50 mol %, are found in the phospholipids of specialized membranes
where their depletion impairs function [1]. In retinal membranes, for instance, PUFAs are particularly
abundant, and nearly 30% of phosphatidylcholines (PCs) isolated from bovine rod outer segments are
dipolyunsaturated [2]. Dietary consumption of PUFAs is also known to elevate the modest
concentration, usually less than 10 mol %, of PUFA-containing phospholipids in the plasma
membrane alleviating a number of chronic conditions [3]. While interest in the topic has centered on
the omega-3 class of PUFA lipids, it has also spanned a variety of human health issues, including
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PUFA-associated effects on protein signaling in inflammation and cancer [4], arteriosclerosis [5], and
suppressive effects on the immune system [6].

Cholesterol is an essential component of mammalian cells and is either obtained from foods of
animal origin (e.g., milk, cheese, meat, eggs, etc.) or synthesized in the endoplasmic reticulum [7]. It
is required for building and maintaining cell membranes, regulates their fluidity, and may act as an
antioxidant [8]. Recently, cholesterol has also been implicated in cell signaling processes, where
researchers have suggested that it is involved in the formation of lipid rafts in the plasma membrane
[9, 10], and has also been found to reduce the permeability of the plasma membrane to sodium and
hydrogen ions [11].

The interaction of cholesterol with the fatty acids of phospholipids plays a crucial role in
modulating molecular organization within membranes [7]. Its interaction with saturated fatty acid
(SFA)-containing PCs is well characterized. The introduction of the rigid steroid moiety into
homoacid-disaturated PC membranes disrupts the regular packing of chains in the gel or solid ordered
(so) phase and restricts the reorientation of the fatty acid chains in the liquid crystalline or liquid-
disordered (Id) phase [12]. The differential between the phases is smeared out until a liquid-ordered
(lo) phase - characterized by rapid reorientation but high conformational order - is formed over a wide
range of temperatures at concentrations >16 mol % cholesterol. Excess sterol is expelled when the
content exceeds >50 mol % [13]. Within the membrane, the 3 f-hydroxyl group of cholesterol locates
just below the aqueous interface [14] and the steroid moiety rotates rapidly about the long molecular
axis that wobbles through a narrow range of angles slightly tilted relative to the bilayer normal [15]. A
similar behavior is exhibited by heteroacid-saturated-monounsaturated PC [16-18]. However, the
interaction of cholesterol with polyunsaturated fatty acid (PUFA)-containing phospholipids for which
the sterol has diminished affinity is much less understood and has only recently begun to receive
attention.

Figure 1. Deuterium label positions (yellow) of cholesterol. A)
Headgroup-labeled cholesterol involving hydrogens
[2,2,3,4,4,6-°Hg] near the hydroxyl group on the steroid moiety.
B) Acyl tail-labeled cholesterol [25,26,26,26,27,27,27-*H,]. Not
all of the deuterons are visible.

2. Experimental details

Neutron diffraction data were recorded at the Canadian Neutron Beam Centre’s N5 beamline, located
at the National Research Universal (NRU) reactor (Chalk River, ON), using 2.37 A wavelength A
neutrons. The appropriate wavelength neutrons were selected by the (002) reflection of a pyrolytic
graphite (PG) monochromator, and a PG filter was used to eliminate higher order (i.e., A/2, etc.)
reflections. The methods of sample preparation and neutron data analysis follow exactly those
described previously [19, 20]. Besides unlabeled cholesterol, experiments included 10 mol% of either
“headgroup” [2,2,3,4,4,6-He] (Fig. 1A) or “tail” [25,26,26,26,27,27-H;] (Fig. 1B) labeled cholesterol.
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3. Results

Figure 2A shows difference (deuterated minus non deuterated cholesterol samples) scattering length
density (SLD) profiles of bilayers with varying degree of acyl chain unsaturation containing 10 mol%
of unlabeled or headgroup-labeled [2,2,3,4,4,6-"Hq] cholesterol (Fig. 1A). For bilayers other than
dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) the difference is dominated
by a single pair of Gaussian shaped peaks symmetrically disposed on either side of the origin. On the
other hand, for 20:4-20:4PC bilayers the difference SLD profile is described by a single Gaussian
centered at the origin. These peaks designate where the center of mass of the six deuterated sites on
the labeled sterol sits within each membrane. The solid line is a single Gaussian function fit to the
difference data, which is used to determine the location and width. The appearance of a single
Gaussian (20:4-20:4PC bilayers) is indicative of a single population for the label. This result clearly
establishes that the cholesterol molecule has undergone a major reorientation within the
dipolyunsaturated membrane, such that its hydroxyl group is now located in the middle of the bilayer
instead of near the aqueous interface as is usually the case. The question that this surprising
observation raises is whether the sterol lies flat between monolayers or, less likely, has become
inverted in the bilayer. To answer this question we followed up with additional neutron experiments
employing tail-labeled [25,26,26,26,27,27-H;] cholesterol.
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Figure 2B shows the difference SLD profiles of 1,2-dioleoyl phosphatidylcholine (18:1-18:1PC)
and 20:4-20:4PC bilayers containing 10 mol % unlabeled cholesterol or [25,26,26,26,27,27,27-2H7]
cholesterol. For both 18:1-18:1PC and 20:4-20:4PC bilayers there is a single peak at the center of the
bilayer, indicating that cholesterol’s tail is in the bilayer centre. In the case of 20:4-20:4PC, the entire
sterol is now solvated at the same depth in the lipid acyl chain matrix, clear evidence that cholesterol
lies flat in the midplane of 20:4-20:4PC bilayers.

3.1. Doping of 20:4-20:4PC/10 mol% cholesterol bilayers

Recently, we doped 20:4-20:4PC/10 mol% cholesterol bilayers with either 1-palmitoyl-2-oleoyl
phosphatidylcholine (16:0-18:1PC) or 1,2-dimyristoyl phosphatidylcholine (14:0-14:0PC) lipids.
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Preliminary data indicate that cholesterol can be induced to revert to its nominal upright orientation in
20:4-20:4PC bilayers when doped with 50 mol% 16:0-18:1PC (data not shown). However, only 5
mol% of 14:0-14:0PC is needed to accomplish the same effect (Fig. 3).

These results provide further evidence how different lipid species may affect the transmembrane, as
well as the lateral distribution of cholesterol. For example, in plasma membranes, sphingolipids are
primarily located in the outer monolayer [21], whereas PUFAs are preferentially incorporated into
phospholipids, such as phosphatidylethanolamine, that are more abundant in the inner leaflet [22]. In
light of the present results, it is conceivable that the presence of PUFA in the inner leaflet can enhance
the transfer of cholesterol to the outer layer, potentially modifying raft composition and function.
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