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Exploring the Nanoworld with Small-Angle Scattering 

Dale W. Schaefer 
Chemical and Materials Engineering Programs 
University of Cincinnati 
Cincinnati, OH 45221-0012 
dale.schaefer@uc.edu 1. Braggs Law and wave interference 

2. Why do Small-Angle Scattering? 

3. Imaging vs. Scattering 

4. Basic Concepts  

a) Cross Section 

b) Scattering Vector, Fourier Trns. 

c) Scattering Length Density  

5. Particle Scattering 

a) Guinier Approximation 

b) Porod’s Law 

6. Fractal Structure 

7. Nanocomposites 

 

SAXS & SANS:  ≤ 6° 

Source of x-rays, light or neutrons 
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Crystals:  Bragg’s Law and the scattering vector, q 

θ 
d 

1. Ordered Structures give peaks in “reciprocal” Space. 
2. Large structures scatter at small angles. 
3. The relevant size scale is determined by 2π/q 
4.  q is a vector. 

Problem:  Nanomaterials are seldom ordered 

SAXS: θ < 6° 

real space 

source detector 

Reciprocal space  
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Disordered Structures in “Real Space” 

10µm 

Agglomerates 

Primary Particles 

Aggregates 

Precipitated Silica 

(NaO) (SiO2)3.3 + HCl  —> SiO2 + NaCl 

10 nm 

Water Glass 

Complex 
Hierarchical 
Disordered 

Difficult to quantify structure from images. 
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Hierarchical Structure from Scattering 

100,000 nm 200 nm 0.5 nm 10 nm 

Agglomerate Aggregate Primary 
Particle 

Network 
“Polymer” 

Four Length Scales 
Four Morphology Classes 

Exponents related to 
morphology 
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R G  = 89   μ 

q [Å-1] ~ Length-1 ~ sin(θ/2) 
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Why Reciprocal Space? 

10 µm 

Isotactic polystyrene foams prepared by TIPS Jim Aubert, SNL 

Ultra-small-angle neutron scattering: a new tool for materials research. Cur. Opinion Sol. State & Mat Sci, 2004. 8(1): p. 39-47. 

Images miss similarity 



8/8/2012 
NX School 6 

Characterizing Disordered Systems in Real Space 

∫=Γ durununrn )+()()(

 

n(r)

r  

Γn(r)
Real space 

ξ 

Electron Density Distribution 
Correlation Function of the 

Electron Density Distribution 

Depends on latitude and longitude. 
Too much information to be useful. 

Depends on separation distance. 
Retains statistically significant info. 

r 

Resolution problems at small r 
Opacity problems for large r 

2-dimensional 
Operator prejudice 

Throw out phase information 

× 

Problems with real 
space analysis 
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Imaging vs. Scattering 

∫=Γ durununrn )+()()(

 

Γn(r)

r 

 

I scatt (q)

q 

Real space 

Reciprocal space 

ξ 

ξ-1 

Schaefer, D. W. & Agamalian, M. Ultra-small-angle neutron 
scattering: a new tool for materials research. Curr Opin Solid St & 
Mat Sci 8, 39-47, (2004). 
 
Pegel, S., Poetschke, P., Villmow, T., Stoyan, D. & Heinrich, G. 
Spatial statistics of carbon nanotube polymer composites. Polymer 
50, 2123-2132, (2009). 
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Anodized Aluminum 

2000 Å 

Incident 
Beam 

ϕ = 0° ϕ = 64° 

Why is there a peak? 
What is the meaning of the peak position? 
Why did the peak disappear for the 64° 
curve. 
What is the meaning of  “Intensity (cm-1)” 
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Intensity and Differential Scattering Cross Section 

sample 

dΩ 

θ = scattering angle 

Plane wave  
J0 

Spherical wave 
  JΩ 

Spherical wave:  Flux JΩ  =    energy/unit solid angle/s    or      photons/ unit solid angle /s 

 

Plane wave:   Flux J0  =    energy/unit area/s              or        photons/unit area/s 

Energy of a wave ~ Intensity ~ Amplitude2 = |A|2 

A 
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What is “Intensity?”  What do we really measure? 

length 

Area 

beam 

Often called the scattering cross section or the intensity 
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Generalized Bragg’s Law for Disordered System  

x 

Scattering from 2 atoms 

r r2 r3 

r4 

What is the relationship between real space and reciprocal space 
when there are no crystal planes? 

dΩ 
2 atoms 

many atoms 
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Scattering from two atoms 

S0 
r 

S 

x 

Difference in 
path length 

δ 

unit vector 

Instrument (q) 

Sample (r) 

What are the units of const? 
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Scattering vectors s and q 

θ 

θ/2 λ
θ

λ
2/sin2|ˆˆ| 0 ===

S-S |s| s

q = 2 π s      Also called the scattering vector 

Same length 

SAXS 
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Combine the two waves 

    

 

A0  e
i2π υt−x λ( )

Total Scattered Wave  

scattering power, b, of an atom 
has the units of length 

Δφ 
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Adding up the Phases 

r 

r2 r3 

r4  q = 2πs 

Atomic density distribution  
n(r) = number of atoms in a volume 

element dr = dx dy dz around point r. 

x and t terms suppressed 

Scattering length density distribution  
ρ(r) = scattering length in a volume 

element dr = dx dy dz around point r. 

∑ ∫→

ρ(r) = bn(r) 

Many atoms 

Amplitude  is the Fourier transform of the SLD distribution  (almost) 

r1 



8/8/2012 
NX School 16 

Scattering Length Density (SLD) Distribution 

ρ(r) = SLD distribution 
        = atomic density distribution x atomic scattering length, b. 

Fourier transform of  
the scattering length  
density distribution 〉(r) 

Can’t be measured 

Square of the Fourier transform of the SLD distribution 

ρ(r) 

What we measure: 

Can’t be inverted 
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Scattering from Spherical Particle(s) 

2R 
ρo B-50 

v = particle volume 

I(q) ~ N(ρ - ρo)2v2P(q) 

solvent SLD 

Form Factor 

N particles 
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Particle in Dilute Solution 

ρ2 

ρ1 

RV 

R 
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Small-Angle Scattering from Spheres 

 

sinθ = λ
2d

d >>λ →   θ

Large object scatter at small angles 

Silica in Polyurethane 

AFM 

Guinier Regime 

Porod (power-law) Regime 

Diameter   = 140 Å 

3 µm 

Petrovic, Z. S. et al. Effect of silica nanoparticles on 
morphology of segmented polyurethanes. Polymer 45, 
4285-4295, (2004) 
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Guinier Radius 

Initial curvature is a measure of length 

Rg ~ 1/q 

Derived in 5.2.4.1 
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Guinier Fits 

 

RG
dilute →   Rg

Guinier radius            Radius-of-Gyration 

Use 
“Unified Fit” 
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Dense packing:  Correlated Particles 

Packing Factor = k = 8 ϕ 

Packing Factor ≅ 6 

ξ 

R 

Å 
Å 
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Colloidal Silica in Epoxy 

 
50 nm 

Exclusion zone 

EPON 862 + Cure W 
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Using Rg:  Agglomerate Dispersion 

24 

Light Scattering 

sonicate 

hard agglomerate 

dry 

3.5 µm 

Schaefer, D. W., Kohls, D. & Feinblum, E. Morphology of Highly Dispersing 
Precipitated Silica: Impact of Drying and Sonication. Journal of Inorganic and 
Organometallic Polymers and Materials DOI: 10.1007/s10904-011-9643-y, (2011) 
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Hierarchical Structure from Scattering 

25 

100,000 nm 200 nm 0.5 nm 10 nm 

Agglomerate Aggregate Primary 
Particle 

Network 
“Polymer” 

Four Length Scales 
Four Morphology Classes 

Exponents related to 
morphology 
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R G  = 89   μ 

q [Å-1] ~ Length-1 ~ sin(θ/2) 

USAXS 

SAXS 
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Fractal description of disordered objects 

Mass Fractal Dimension = d 

Real Space 

M ~ Rd 

Dispersion of 
colloidal fillers. 

d = 3 

d = 2 

M ~V ~ R3 
 
 
 
 

M ~V ~ R2 
 
 
 
M ~V ~ R1 
 
 
 
 
M ~V ~ R2.2 
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Surface Fractal Dimension 

S ~ Rds 

S ~ R2 

fractal or self-affine surface 

Sharp interface 
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Scattering from Fractal Objects:  Porod Slopes 

d = Mass Fractal Dimension  ds = Surface Fractal Dimension 

  

 

M ~ v ~ R3     solid particle

M ~ v ~ Nvu ~ Rdvu      mass fractal 

 

S = R2       solid particle

S ~ Rds      surface fractal

d
u RvNvqI 222 ~)(~~)0( =

Match at qR = 1 

s

dxd

ddx
RR s

−=

+

2
~ 2

qR = 1 
Large q 

~ Sv/q-x 

)2(~)( sddqqI −−

Small q 
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Porod Slope for Fractals 

Structure Scaling Relation Porod Slope= ds – 2dm 

dm = 3 

d S  = 2 
- 4 

dm = 3 

2 < d S  ≤ 3  

- 3 ≤ Slope ≤ - 4 

 1 ≤ ds = dm ≤ 3 - 1 ≤ Slope ≤ - 3 

Smooth Surface 

Rough Surface 

Mass Fractal 

I(q)=qds-2dm 

 

qR >>1
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Scattering from colloidal aggregates 

R 
r 

Precipitated Silica 

Log q 

L
og

 I qR = 1 

qr = 1 

q-d 

q-4 
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Morphology of Dimosil® Tire-Tread Silica 

31 

Two Agglomerate length Scales 
Soft = Chemically Bonded 

Hard = Physically Bonded 

-2 

-4 

7 µm 

116 µm 

300 nm 

Light Scattering 

USAXS 

126 Å 

Dispersion 

Reinforcement 
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Aggregates are robust 

32 

Soft Agglomerates 

Hard Agglomerates 

Aggregates 

What is the ideal aggregate size? 

shear  

Ragg 
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Exploring the Nanoworld 

Tubes 

Carbon Nanotubes 

Sheets 

Layered Silicates 

How valid are the cartoons? 
What are the implications of morphology for material properties? 

Spheres 

Colloidal Silica 

1-d                          2-d                         3-d    

Answers come from Small-Angle Scattering. 

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517. 
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The Promise of Nanotube Reinforcement 

 

Eδ = 1+ 2.5φ

 

= 1+ 2αφ ≅ 1+ 2000φ

 

= 1+ 0.4αφ ≅ 1+ 400φ

 

Eδ =
Ecomposite

Ematrix

α = aspect ratio 
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0.01% Loading CNTs in Bismaleimide Resin 

5000 Å 

-1 ) 

q(Å ) 

PD LIGHT 

-1 
.00001 .001 10 

SAXS 

.1 

Length Diameter Surface Local 
Structure 

-1 

-4 
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0.05% Carbon in Bismaleimide Resin 

2000 Å 

d 

Lp 

 

α =
L p

r
= 4.5

Worm-like branched 
cluster 
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TEM of Nanocomposites 

Hyperion MWNT in Polycarbonate 

Pegel et al. Polymer (2009) vol. 50 (9) pp. 2123-2132 
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Morphology and Mechanical Properties 

Short Fiber 

Halpin-Tsai, random, short, rigid fiber limit 

No better than spheres 

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517. 
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CNTs in Epoxy 

  

  
Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. Comp. Sci. & Tech. 2005, 65, (15-16), 2300-2313. 

Assumes no connectivity 
α = 4.5 
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Don’t Believe the Cartoons 

Tubes 

Carbon Nanotubes 

Sheets 

Layered Silicates 

Spheres 

Colloidal Silica 

1-d                          2-d                         3-d    

Schaefer, D.W. and R.S. Justice, How nano are nanocomposites? Macromolecules, 2007. 40(24): p. 8501-8517. 
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Conclusion 

If you want to determine the morphology of a disordered material 
 

use small-angle scattering. 
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Extras 
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Correlation Functions 

ΓΔρ(r) is the autocorrelation function of the fluctuation 
of  scattering length density = Patterson function 

Ensemble Average <  > 

new r is independent of origin 

u 

v 

r 

Scattering cross section is the Fourier transform of the ensemble average of 
the correlation function of the fluctuation of  scattering length density. 

depends on absolute position of atoms 

depends on relative position of atoms 

× 

problem 
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Not really a Fourier Transform 

r 

  

 

ρ2 V

Γρ(r) 

Problem! 
Must know sample geometry 

 

I(q) = Γρ (r)  e−iq⋅rdr
V∫ ≠ Γρ (r)  e−iq⋅rdr

-∞

∞

∫
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Extending to infinite integrals 

Scattering is determined by fluctuations of the density from the average 
 

A dilute gas does not “diffract” (scatter coherently). 
 

  

 

η(r) = ρ(r) − ρ

Γη = Autocorrelation of the fluctuation 
of the scattering length density. 

page 29 

qriqreiqr sincos +=

 

δ(q ) = e−iqx∫ dx
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SAXS from Polymers 

End-to-end distance 

CH2 

Gaussian probability distribution 

r 
dr 

W
(r

) 
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Scattering from Polymer Coils 

N bonds of length l, N+1 beads of volume vu 
scattering length of one bead = ρ0vu 

e-e distribution for 
a walk of K steps 

l = bond length 

Number of 
walks of K steps 
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Worm-like Chain 

Persistence 
Length, L 

Rod like on short length scales 

Log q 

Lo
g 

I(
q)

 

-2 

-1 

d = 1 

d = 2 

Gaussian on large 
length scales 



8/8/2012 
NX School 49 

Correlation Functions 

Γρ(r) is the autocorrelation 
function of the scattering length 
density 

Ensemble Average <  > 

new r is independent of origin 

u 

v 

r 

Scattering Cross section is the Fourier Transform of the ensemble average 
of the correlation function of the scattering length density (Patterson 
Function) 
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