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• Applications – is SAS for you?• Applications – is SAS for you? 
• Comparison with microscopy and diffraction

B i f h h i• Basic concepts of the technique
• SANS instrumentation
• Planning a SAS experiment and data reduction
• SAS data analysis and interpretationy p
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SAS of x-rays, neutrons, laser light 

• SAXS & SANS: structural information 1nm-1μm
X rays• X-rays
– Rotating anode / sealed tube: ~ 400 k$
– Synchrotron: high flux, very small beams

• Neutrons
– Isotope contrast, high penetration, magnetic contrast

L Li ht tt i• Laser Light scattering
– Bench top technique, static and dynamic 

• Applications in …Applications in … 
– Important for polymers, soft materials, (biology)
– Particulate and non-particulate

Pretty much anything 1nm-1μm …really 
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– Pretty much anything 1nm-1μm
anything? 



SAS applications A to Z
Alzheimer’s disease, aerogel, alloys Magnetic flux lines, 

But what 
about SEM, 
TEM AFM

Alzheimer s disease, aerogel, alloys

Bio-macromolecular assemblies, bone

Colloids, complex fluids, catalysts

g ,
materials science

Nano-anything

Orientational order

TEM, AFM 
…?

Detergents, dairy (casein micelles) 

Earth science, emulsions

f

Orientational order

Polymers, phase behavior, porosity

Quantum dots (GISAXS)
Fluid adsorption in nanopores, fuel cells, 

food science (chocolate)

Gelation, green solvents

( )

Rubber, ribosome

Soft matter, surfactants, switchgrass

High pressure, high temperature…, 
hydrogen storage, helium bubble growth 
in fusion reactors

Time-resolved, thermodynamics

Uranium separation

V i l iImplants (UHDPE)

Jelly 

Kinetics (e g of polymerization or protein

Vesicles, virus 

Wine science 

Xylose isomeraseKinetics (e.g. of polymerization or protein 
folding), keratin

Liquid Crystals

Xylose isomerase

Yttrium-stabilized zirconia (YSZ)

Zeolites



Microscopy : enlarged image

incident
beam

Sample
Image

f i iSample focusing optics

SAS : interference pattern
y

x

φ
incident

beam

θ
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Neutron Scattering and Microscopy

• Common features
– Size range 1nm-1μmg μ
– Contrast labeling options (stains / isotope labels)

• SAS practical aspects
N i l l ti h i t– No special sample preparation such as cryo-microtome 

– Sample environments control (p, T, H)
– Non-destructive (exception: radiation damage in synchrotron beam)
– In-situ, time-resolved

• Fundamental difference
– “Real space” image with certain resolutionReal space  image with certain resolution
– Scattering pattern, averaged over volume

• Complementarity

6 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name



Alzheimer’s Disease – β-Amyloid

• Among leading causes of death

• Miss-folded peptides form hierarchical ordered fibril structures & plaques

• Structure established using synthetic model peptides and complementary
methods NMR, SANS, EM

• NMR
− β-fold

• SANS 
− Fiber shape
− Diameter
− 6 sheet stack

• EM 
− Overall 

morphologyp gy
− Twist

T.S. Burkoth et al. J. Am. Chem. Soc. 2000, 122, 7883-7889
30 nm



Comparing SAXS and SANS
• SAXS & SANS• SAXS & SANS

– nm scale structural analysis (~1nm-1μm)
– Non-destructive  (radiation damage in synchrotron SAXS can be an issue)

I it– In-situ

• Synchrotron X-rays
– High throughput
– Time-resolution (ms – ps)
– Tiny beams – microfocus: e.g. scanning of cells

• NeutronsNeutrons
– ‘see’ light atoms: polymers, biology, soft condensed matter, hydrogen in metals
– Isotope labeling
– High penetration– High penetration

• bulky specimens, e.g. residual stress in motor block
• complicated environments (P,T), e.g. 4He cryostat

Magnetic contrast

8 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

– Magnetic contrast 
– No radiation damage



Scattering and Diffraction 
(Crystallography)( y g p y)

• Diffraction from crystals, Scattering from anything else (less 
ordered)ordered)

• Same basic physics: interactions of radiation with matter
– SAXS/WAXS SAND/WANDSAXS/WAXS, SAND/WAND 
– Instruments: resolution (D) / flux (S)
– Diffraction needs crystals, scattering does not.
– Analysis?!

• At small Q (small angles, large λ): observe nm-sized volume 
elements, “blobs” NOT atomselements, blobs  NOT atoms
– Scattering length → scattering length density (SLD) 
– SAS is sensitive to spatial non-uniformity of SLD:  

ΔSLD = Contrast → contrast variation!
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ΔSLD = Contrast →  contrast variation!



Scattering Vector, q or momentum transfer, Q, h, k, s

Bragg: waves with wavelength λ reflected by 
Wave vector k:  |k| = k = 2π/λ

k θ θ 2θ = ϑ

gg g y
sets of lattice planes

ko

k
q

d θ θ
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ko

q
ϑ Δ = 2d sin(θ)
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q in nm-1 or Å-1q
d



Absolute Intensity / Scattering Cross 
Section cm 1 ?Section – cm-1 ?

dI

Io

dI
dΩD

Ω
Σ=

Ω d
dDTI

d
dI

o Ω
=

Ω
Σ

d
dI

DTId
d 1

[cm-1sterad-1]
ΩΩ dd

dI/dΩ = Scattered intensity per solid angle
Io = Primary beam intensity

ΩΩ dDTId o

T = Transmission (x-ray absorption, incoherent neutron scattering)
D = Thickness
dΣ/dΩ = Scattering cross section per unit volume [cm-1sterad-1]
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Neutron Scattering Intensity

• Incoming waves scatter off individual nuclei according to 
scattering length b (can be + or -).scattering length b (can be  or ).

• Interference of wavelets from distribution of nuclei (= 
structure) adds up to “net scattering” amplitude (Fourier 
t f f t t )transform of structure).

• Measured intensity is the magnitude square of amplitude.
• Measured intensity is also the Fourier transform of pair 

correlation function P(r).

2

3))(()(  •−−= rqi
s rderqI

 ρρ
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V



Contrast – Atomic Scattering Lengths
Element Neutrons

(10-12 cm)
X-rays

(10-12 cm)
Electrons 

1H -0.374 0.28 1

2H (D) 0.667 0.28 1

C 0.665 1.67 6

N 0 940 1 97 7N 0.940 1.97 7

O 0.580 2.25 8

P 0 520 4 23 15P 0.520 4.23 15

For SAS: SL → SLD → ΔSLD
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For SAS:  SL → SLD → ΔSLD



SANS – Contrast Variation

Bile salt micelle
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Visualizing Proteins in Inorganic 
Hydrogels
• Entrapment of bio-macromolecular assemblies: bio-composite, biomimetic, bio-inspired for 
catalysts, sensors, functional materials – for example light harvesting antenna complexes for 
solar energy 
• SANS shows that green fluorescent protein, an enzyme with potential applications in energy g p y p pp gy
transfer and sensor development, is homogeneously dispersed in a silica gel matrix as a 
functional end-to-end dimer.
• SANS with contrast variation shows structure of proteins in a complex gel matrix

Luo, G., Zhang, Q., Del Castillo, A. R., Urban, V. and 
O'Neill, H., ACS Appl. Mater. Interfaces 1:  2262-2268 
(2009). 



Rubber (Polymer Network)

• Unique mechanical properties – “liquid” on local scale but long range structure 
memory

• Economic importance – Tires• Economic importance – Tires

??
• Blend “normal” H- and some 

% D-polyisoprene
Cross link to form r bber net ork• Cross-link to form rubber network

• Stretch rubber sample in the SANS beam and collect data



SANS guide hall (HFIR)SANS guide hall (HFIR)
a few years ago
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Layout of a SANS instrument

particle particlewavewave wave 

up to 80m, D11 ILL

Typical layout at a continuous (reactor) source
“particle – wave proof machine”
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Monochromator – Velocity Selector
neutron wavelength – neutron momentumg

10cm
(MDR-13, Mirrotron, Hungary)

Cold Thermal

mv
h

p
hλ ==

Cold Thermal
T (K) 20 300
v (m/s) 574 2224
E (meV) 1.7 25.9

Å

De Broglie:
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mvp
λ (Å) 6.89 1.78



Practical Considerations at SANS and 
SAXS User Facilities

• Plan your experiment well!
• What Q-range would I like, and what must I have?
• For how long should I measure my samples? – counting 

3statistics, sample size (~ 10 x 10 x 1 mm3)
• How will I correct for backgrounds?
• How can I optimize my sample quality?
• Less is often more:  Do fewer things but those do right! g g

(especially with neutrons) 
• Ask your local contact / instrument scientist for advice 
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y
well ahead of time!



Data Reduction, Processing, Correction

• Normalization to monitor or time
• BackgroundsBackgrounds
• Transmission

A im thal a eraging• Azimuthal averaging
• Absolute intensity scale (cm-1) 

• Measure and subtract background very 
carefully! 
• Do the absolute calibration – it’s worth the 
extra effort!
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extra effort!



Alzheimer’s Disease – β-Amyloid

• Among leading causes of death

• Miss-folded peptides form hierarchical ordered fibril structures & plaques

• Structure established using synthetic model peptides and complimentary 
methods NMR, SANS, EM

• NMR
− β-fold

• SANS 
− Fiber
− Diameter
− 6 sheet stack

• EM 
− Overall 

morphologyp gy
− Twist

T.S. Burkoth et al. J. Am. Chem. Soc. 2000, 122, 7883-7889
30 nm



SAS  Analysis –
A spacewalk of sorts
Fourier Q reciprocal space

Carl Meade and Mark Lee rehearse spacewalk contingency plans in 1994

Fourier, Q, reciprocal space

how to get your bearings… 
baby steps
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mission. He's attached to the craft by both umbilical and tether lines.
Bruce McCandless II took the first untethered space walk in February 1984. Here 
we see him from Challenger, floating above Earth.



Sphere
precisely: monodisperse sphere of uniform 
d it ith h d th fdensity with sharp and smooth surface
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Sphere
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In practice:  sphere + constant 
background
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Spheres of different sizes
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0.001 0.01 0.1
Q (Å-1)



Ellipsoid
aspect ratio 1.5
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11 0

Circular Cylinder -with same Rg as the sphere
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Radius of Gyration, Rg = rms average distance from center of scattering mass



“Long & thin” cylinder

6
8

1

2

4

6

Q-1

4

6
8

0.1

P(
Q

)

4

6
8

0.01

2P

0.001

2

4

2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4

30 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

0.001
2 3 4 5 6 7 8

0.01
2 3 4 5 6 7 8

0.1
2 3 4

Q (Å-1)



Polymer coil

6
8

1

0.1

2

4

Q-2

2

4

6
8

0.1

P(
Q

)

4

6
8

0.01

0.001

2

0 001
2 3 4 5 6 7 8

0 01
2 3 4 5 6 7 8

0 1
2 3 4

31 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

0.001 0.01 0.1
Q (Å-1)



Guinier Analysis 
size of any kind of object

• At small Q anything that could reasonably be considered a discrete 
object follows Guinier approximation.object follows Guinier approximation.

ggg RRqRRqqI
3
522 :sphere;13/)](ln[ =<∝

• Modified Guinier approximations 
exist to determine cross 
sectional radius of rods orsectional radius of rods or 
thickness of sheets
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Guinier Analysis  
size of any kind of object

0 1

0.0 Guinier analysis for compact particles
I0=1 ± 6.4344e-06
Rg=77.627 ± 0.0078715 Å

-0.2

-0.1
Q

)) 

 Sphere Data
 Guinier fit
 Guinier fit

Qmax*Rg=0.4301

-0.4

-0.3

Ln
(P

(Q

-0.5

0.4

Guinier analysis for compact particles
I0=1.002 ± 0.00022913
Rg=78.747 ± 0.037728 Å
Qmax*Rg=1.2359

-0.6
250x10-6200150100500

Q2 (Å-2)

Qmax g

Å
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Precise Rg is 77.46 Å 



Guinier Analysis  
size of any kind of object

0 1

0.0 Guinier analysis for compact particles
I0=1.0048 ± 3.6871e-05
Rg=76.96 ± 0.034883 Å
Qmax*Rg=0.49062

-0.2
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Q

)) 

 Rod Data
 Guinier fit
 Guinier fit

Qmax Rg 0.49062

0 4
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I0=0.99866 ± 0.00072094
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Q *R =1 1402

Å
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Precise Rg is 77.46 Å 
Q ( )



Modified Guinier Analysis  
for object extended in 1 dimension

-4.6  Rod Data
 Modified Guinier fit for rods
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Modified Guinier analysis for rodlike forms
IC=0.012324 ± 3.027e-05
Rc=9.0941 ± 0.01747 Å
Qmax*Rc=1.3143
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Rod radius = √2 * Rc = 12.9 Å,  exact radius = 13.3 Å
A similar approach exists for thickness of (2d) sheet-like structure.



Pair correlation function and shape

D

P(r) : inverse Fourier transform of 
scattering function : Probability of 
fi di t f l th b t Dmax

r
finding a vector of length r between 
scattering centers within the 
scattering particle.
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Shape : Modeled as a uniform density distribution that best 
fits the scattering data.
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fits the scattering data.



SAS Form Factor Modeling 
of great use in biologyg gy

• Spherical Harmonics (Svergun, Stuhrmann, Grossman …)
• Aggregates of Spheres (Svergun, Doniach, Chacón, Heller …)
• Sets of High-resolution Structures (Svergun, Heller, Grishaev, Gabel …)
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g ( g , , , )
• Simple Shapes and Custom Approaches (Henderson, Zhao, Gregurick, Heller …)



Surface Scattering - Porod

B t f t l h i t f Q x 3 4
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But, fractal rough interfaces: Q-x , 3 < x < 4



Interparticle Structure Factor  S(Q)

S(q) examples: hard sphere potential, sticky sphere, screened coulomb etc.
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S(q)·P(q) is not always valid and useful!



Structural Hierarchy (particulate)

Structural information viewed on five length scales. Structural features at larger length scales are
observed at smaller Q.

Adapted from DW Schaefer MRS Symposium Proceeding 1987
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Scattering analysis that describes hierarchical structures: Mass Fractal (Teixeira), Unified
Fit (Beaucage) combine power law scattering ranges with Rg transitions



Non-particulate Scattering
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SAS Summary
• SAS applications are in the nm to mm range and 

otherwise only limited by  imagination.

• SAS is used alone, but often complementary to 
other methods, e.g. microscopy.

S i i i il diff i (b diff )• Scattering is similar to diffraction (but different).

• SAS data analysis can be tough math, or make use 
of readily available approximations models andof readily available approximations, models and 
software.

• SAS does not see atoms but larger interesting• SAS does not see atoms but larger, interesting 
features over many length scales.

• Precision of structural parameters can be 1Å or

42 Managed by UT-Battelle
for the U.S. Department of Energy Presentation_name

Precision of structural parameters can be 1Å or 
better.



SAS Literature Suggestions
• Guinier, A., Fournet, G.  1955.  Small-Angle Scattering of X-rays.  John Wiley & Sons, 

New York.
The classical work on small-angle scattering. Even though focused on x-rays, much of the theory 

and data interpretation apply just as well to neutrons.a d data te p etat o app y just as e to eut o s

• Roe, R. J.  2000.  Methods of X-Ray and Neutron Scattering in Polymer Science. 
Oxford University Press, New York and Oxford.

Even though focused on polymers, this book gives a very thorough account on the basic scientificEven though focused on polymers, this book gives a very thorough account on the basic scientific 
principles of small-angle scattering in a fashion that is accessible to non-expert scatterers.

• Higgins, J. S., and Benoît, H. C.  1994.  Neutron Scattering from Polymers. Clarendon 
Press, Oxford.,

A comprehensive description on neutron scattering and in particular small angle neutron scattering. 
Even though focused on polymers, the book is very useful for anyone interested in small angle neutron 
scattering.

P d J S 1997 A l i f ll l tt i d t f ll id d• Pedersen, J. S., 1997. Analysis of small-angle scattering data from colloids and 
polymer solutions: modeling and least-squares fitting.  Adv. Colloid Interface Sci. 
70:171-210.

Contains a comprehensive list of form factors and structure factors that are used for interpreting
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Contains a comprehensive list of form factors and structure factors that are used for interpreting 
small-angle scattering data. 


