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What is a crystal?
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• Atoms (molecules) pack 

together in a regular pattern to 

form a crystal.

• Periodicity: we superimpose 

(mentally) on the crystal 

structure a repeating lattice or 

unit cell.

• A lattice is a regular array of 

geometrical points each of 

which has the same 

environment.Unit cells of oxalic acid dihydrate

Quartz crystals



Why don’t the X-rays scatter in all directions?

3

X-ray precession photograph

(Georgia Tech, 1978).

• X-rays and neutrons have 

wave properties.

• A crystal acts as a 

diffraction grating producing 

constructive and destructive 

interference.



Bragg’s Law
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William Henry Bragg William Lawrence Bragg

Jointly awarded the 1915 

Nobel Prize in Physics



Crystallographic Planes and Miller Indices
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(221)

d-spacing = spacing between origin and first plane or between 

neighboring planes in the family of planes.



Laue Equations
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Si

Sa

a • S

a • (-Si)

a • S + a • (-Si) = a • (S – Si) = hλ

a • (S – Si) = hλ

b • (S – Si) = kλ

c • (S – Si) = lλ

Scattering from points

In three dimensions →

Max von Laue

1914 Noble Prize for Physics



Real and Reciprocal Space

a* • a = b* • b = c* • c = 1

a* • b = … = 0

Laue equations:

a • (So – Si) = hλ, or a • s = h

b • (So – Si) = kλ, or b • s = k

c • (So – Si) = lλ, or c • s = l

where

s = (So – Si)/λ = ha* + kb* + lc*
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The Ewald Sphere
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The Ewald sphere: the movie
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Courtesy of the CSIC (Spanish National Research Council).

http://www.xtal.iqfr.csic.es/Cristalografia/index-en.html



Bragg Peak Intensity
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b

hklhkl IF 2

Relative phase shifts 

related to molecular 

structure.



Two-theta

C
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u
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ts

θ-2θ Step Scan
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Omega Step Scan

Omega

Mosaic 

spread

1. Detector stationary at 

2θ angle.

2. Crystal is rotated 

about θ by +/- ω.

3. FWHM is the mosaic 

spread.
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Something completely different - polycrystallography

What is a powder? - polycrystalline mass

All orientations of crystallites 

possible

Sample: 1ml powder of 1mm crystallites -

~109 particles

Single crystal reciprocal lattice 

- smeared into spherical shells

Packing efficiency – typically 50%

Spaces – air, solvent, etc.

Courtesy of R. Von Dreele



Powder Diffraction
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Bragg’s Law:   sin2*d

• Usually do not attempt to integrate individual 

peaks.

• Instead, fit the spectrum using Rietveld profile 

analysis. Requires functions that describe the 

peak shape and background.



Why do single crystal diffraction (vs. powder 

diffraction)?

 Smaller samples – 1-10 mg vs 500-5000 mg

 Larger molecules and unit cells

 Hydrogen is ok – generally does not need to be deuterated

 Less absorption

 Fourier coefficients are more accurate – based on integrating well-
resolved peaks

 Uniquely characterize non-standard scattering – superlattice and satellite 
peaks (commensurate and incommensurate), diffuse scattering (rods, 
planes, etc.)

But:

 Need to grow a single crystal

 Data collection can be more time consuming
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Some history of single crystal neutron diffraction
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• 1951 – Peterson and Levy demonstrate the feasibility of single crystal 

neutron diffraction using the Graphite Reactor at ORNL.

• 1950s and 1960s – Bill Busing, Henri Levy, Carroll Johnson and others wrote 

a suite of programs for singe crystal diffraction including ORFLS and ORTEP.

• 1979 – Peterson and coworkers demonstrate the single crystal neutron time-

of-flight Laue technique at Argonne’s ZING-P’ spallation neutron source.



U is a rotation matrix relating the unit cell to the 

instrument coordinate system.

The matrix product UB is called the orientation 

matrix.

The Orientation Matrix

17



Picker 4-Circle Diffractometer
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Kappa Diffractometer
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Brucker AXS: KAPPA APEX II

• Full 360° rotations about ω and φ axes.

• Rotation about κ axis reproduces quarter 

circle about χ axis.



Monochromatic diffractometer
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Reactor

HFIR 4-Circle 

Diffractometer

• Rotating crystal

• Vary sin in the Bragg equation:

2d sin = n

 nd sin2  nd sin2



Laue diffraction
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Polychromatic “white” spectrum

I()





Laue photo from white radiation
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X-ray Laue photos taken 

by Linus Pauling



Quasi-Laue Neutron Image Plate Diffractometer
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Select D/ of 10-20%

2011 at HFIR: IMAGINE



Pulsed Neutron Incident Spectrum

 = (h / m)•(t / L)

12.5 msec
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33 1/3 msec

SOURCE

PULSED

AT 30 HZ
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Time-of-Flight Laue Technique
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SCD Instrument Parameters

Sample Environments

Hot-Stage Displex: 4-900 K

Displex Closed Cycle Helium Refrigerator: 

12–473 K

Furnaces: 300–1000 K

Helium Pressure Cell Mounted on Displex: 

0–5 kbar @ 4–300 K

Incident 

neutron 

beam

105 K liquid 

methane moderator, 

9.5 m upstream15 x 15 cm2

detectors

Sample 

vacuum 

chamber

Closed-cycle 

He refrigerator

Incident 

neutron 

beam

105 K liquid 

methane moderator, 

9.5 m upstream

105 K liquid 

methane moderator, 

9.5 m upstream15 x 15 cm2

detectors

Sample 

vacuum 

chamber

Closed-cycle 

He refrigerator

Moderator liq. methane at 105

Source frequency 30 Hz

Sample-to-moderator dist. 940 cm

Number of detectors 2

Detector active area 155 x 155 mm2

Scintillator GS20 6Li glass

Scintillator thickness 2 mm

Efficiency @ 1 Å 0.86

Typical detector channels 100 x 100

Resolution 1.75 mm

Detector 1:

angle 75°
sample-to-detector dist. 23 cm

Detector 2:

angle 120°
sample-to-detector dist. 18 cm

Typical TOF range 1–25 ms

wavelength range 0.4–10 Å

d-spacing range ~0.3–8 Å

TOF resolution, Δt/t 0.01

Detector distances on locus of constant 

solid angle in reciprocal space.

Now operating in Los Alamos.
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ISAW hkl plot
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Analysis of ZnMn2O4 by William Ratcliff II (NIST).

ISAW 3D Reciprocal Space Viewer
Diffuse Magnetic Scattering



SNAP
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ORTEP of oxalic acid dihydrate from 
data measured on SNAP in December, 
2008.



Topaz

 Project Execution Plan 
requires a minimum of 2 
steradian (approx. 23 
detectors) coverage.

 Each detector active area is 
150 mm x 150 mm.

 Secondary flight path varies 
from 400 mm to 450 mm 
radius and thus cover from 
0.148 to 0.111 steradian
each.
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?, Matt Frost, Xiaoping Wang, Christina Hoffmann, Jack Thomison



Outline of single crystal structure analysis

 Collect some initial data to determine the unit cell and 

the space group.

– Auto-index peaks to determine unit cell and orientation

– Examine symmetry of intensities and systematic absences

 Measure a full data set of observed intensities.

 Reduce the raw integrated intensities, Ihkl, to structure 

factor amplitudes, |Fobs|
2.

 Solve the structure.

 Refine the structure.
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Unit cell and space group
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Data Reduction
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Ihkl = k t() f() e(,r) A() y() |Fhkl|
2 4 / sin2Q

k = scale factor

t()  = deadtime loss

f = incident flux spectrum, obtained by measuring the incoherent 

scattering from a vanadium sample

e,r = detector efficiency calculated as a function of wavelength 

and position r on the detector for each Bragg peak since 

the slant path through the flat 6Li glass varies with r

A() = sample absorption; includes the wavelength dependence of 

the linear absorption coefficients

y = extinction correction is evaluated during the least-squares 

refinement of the structure

Data reduction:  convert raw integrated intensities, Ihkl,

into relative structure factor amplitudes, |Fhkl|
2.



Fourier transforms
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Ihkl  |Fhkl|
2

Fhkl = |Fhkl|e
-iφ

𝐼ℎ𝑘𝑙 ∝  𝐹ℎ𝑘𝑙  
2 

 

𝜌 𝑥𝑦𝑧 =
1

𝑉
 𝐹ℎ𝑘𝑙

ℎ𝑘𝑙

𝑒−2𝜋𝑖 (ℎ𝑥+𝑘𝑦+𝑙𝑧) 

 

𝐹ℎ𝑘𝑙 =  𝐹ℎ𝑘𝑙  𝑒
−𝑖𝜙 =  𝐹ℎ𝑘𝑙  cos 𝜙 + 𝑖 𝐹ℎ𝑘𝑙  sin 𝜙 = 𝐴 + 𝑖𝐵 

 

𝜙 = tan−1
𝐵

𝐴
 

  

𝐹ℎ𝑘𝑙 =  𝜌𝑥𝑦𝑧 𝑒
2𝜋𝑖(𝒔∙𝒓)𝑑𝒗 =

𝑐𝑒𝑙𝑙

 𝑏𝑗𝑒
2𝜋𝑖 (ℎ𝑥𝑗 +𝑘𝑦𝑗 +𝑙𝑧𝑗 )

𝑗
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𝐹ℎ𝑘𝑙 =  𝐹ℎ𝑘𝑙  𝑒
−𝑖𝜙 =  𝐹ℎ𝑘𝑙  cos 𝜙 + 𝑖 𝐹ℎ𝑘𝑙  sin 𝜙 = 𝐴 + 𝑖𝐵 

 

𝜙 = tan−1
𝐵

𝐴
 

  

𝐹ℎ𝑘𝑙 =  𝜌𝑥𝑦𝑧 𝑒
2𝜋𝑖(𝒔∙𝒓)𝑑𝒗 =

𝑐𝑒𝑙𝑙

 𝑏𝑗𝑒
2𝜋𝑖 (ℎ𝑥𝑗 +𝑘𝑦𝑗 +𝑙𝑧𝑗 )

𝑗

 

Sum over j atoms 

in the unit cell.

Neutron scattering 

length of the jth atom,

* Iwasaki, Iwasaki and Saito, Acta Cryst. 23, 1967, 64.

(COOD)2•2D2O *



Structure solution and Fourier syntheses
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Measured 
intensity

Electron (X-
ray) or nuclear 
(neutron) 
density at 
point x,y,z in 
the unit cell

Phase angle

Neutron 
scattering 
length or 
X-ray form 
factor for 
jth atom

Sum over j 
atoms in 
the unit 
cell

𝐼ℎ𝑘𝑙 ∝  𝐹ℎ𝑘𝑙  
2 

 

𝜌 𝑥𝑦𝑧 =
1

𝑉
 𝐹ℎ𝑘𝑙

ℎ𝑘𝑙

𝑒−2𝜋𝑖 (ℎ𝑥+𝑘𝑦+𝑙𝑧) 

 

𝐹ℎ𝑘𝑙 =  𝐹ℎ𝑘𝑙  𝑒
−𝑖𝜙 =  𝐹ℎ𝑘𝑙  cos 𝜙 + 𝑖 𝐹ℎ𝑘𝑙  sin 𝜙 = 𝐴 + 𝑖𝐵 

 

𝜙 = tan−1
𝐵

𝐴
 

  

𝐹ℎ𝑘𝑙 =  𝜌𝑥𝑦𝑧 𝑒
2𝜋𝑖(𝒔∙𝒓)𝑑𝒗 =

𝑐𝑒𝑙𝑙

 𝑏𝑗𝑒
2𝜋𝑖 (ℎ𝑥𝑗 +𝑘𝑦𝑗 +𝑙𝑧𝑗 )

𝑗

 



Friedel’s law
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Measured 
intensity

Electron (X-
ray) or nuclear 
(neutron) 
density at 
point x,y,z in 
the unit cell

Phase angle

The structure 
factor of hkl
and –(hkl) are 
complex 
conjugates.

𝐼ℎ𝑘𝑙 ∝  𝐹ℎ𝑘𝑙  
2 

 

𝜌 𝑥𝑦𝑧 =
1

𝑉
 𝐹ℎ𝑘𝑙

ℎ𝑘𝑙

𝑒−2𝜋𝑖 (ℎ𝑥+𝑘𝑦+𝑙𝑧) 

 

𝐹ℎ𝑘𝑙 =  𝐹ℎ𝑘𝑙  𝑒
𝑖𝜙 =  𝐹ℎ𝑘𝑙  cos 𝜙 + 𝑖 𝐹ℎ𝑘𝑙  sin 𝜙 = 𝐴 + 𝑖𝐵 

 

𝜙 = tan−1
𝐵

𝐴
 

  
𝐹− ℎ𝑘𝑙 =  𝐹ℎ𝑘𝑙  𝑒

−𝑖𝜙 =  𝐹ℎ𝑘𝑙  cos 𝜙 − 𝑖 𝐹ℎ𝑘𝑙  sin 𝜙 

 

𝜌 𝑥𝑦𝑧 =
2

𝑉
  𝐹ℎ𝑘𝑙  cos 𝜙 − 2𝜋 ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧  

ℎ𝑒𝑚𝑖

 

F(hkl) is equal 
to the complex 
conjugate of 
F(-h-k-l).

Fhkl = F*-(hkl)

Ihkl = I-(hkl)



• In a centrosymmetric crystal, for any atom at x,y,z, there is 

an equivalent atom at -x,-y,-z. 

• Since sin(A) = -sin(-A), the sine term cancels.

• Phase angles are either 0 or .

Centrosymmetric  crystals
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𝐹ℎ𝑘𝑙 =  𝑏𝑗𝑒
2𝜋𝑖(ℎ𝑥𝑗 +𝑘𝑦𝑗 +𝑙𝑧𝑗 )

𝑗

=  𝑏𝑗  cos 2𝜋 ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 + 𝑖 sin 2𝜋(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧) 

𝑗

 

𝐹ℎ𝑘𝑙 =  𝑏𝑗𝑒
2𝜋𝑖(ℎ𝑥𝑗 +𝑘𝑦𝑗 +𝑙𝑧𝑗 )

𝑗

=  𝑏𝑗  cos 2𝜋 ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧 + 𝑖 sin 2𝜋(ℎ𝑥 + 𝑘𝑦 + 𝑙𝑧) 

𝑗

 

• In a centrosymmetric crystal, for any atom at x,y,z, there is 

an equivalent atom at -x,-y,-z. 

• Since sin(A) = -sin(-A), the sine term cancels.

• Phase angles are either 0 or .

• In a centrosymmetric crystal, for any atom at x,y,z, there is 

an equivalent atom at -x,-y,-z. 

• Since sin(A) = -sin(-A), the sine term cancels.

• Phase angles are either 0 or .



Solutions to the phase problem

 Patterson synthesis using the |Fobs|
2 values as Fourier coefficients

– Map of inter-atom vectors

– Also called the heavy atom method

 Direct methods

– Based on probability that the phase of a third peak is equal to the sum of the 

phases of two other related peaks.

– J. Karle and H. Hauptman received the 1985 Nobel Prize in Chemistry

 Shake-and-bake

– Alternate between modifying a starting model and phase refinement

 Charge flipping

– Start out with random phases.

– Peaks below a threshold in a Fourier map are flipped up.

– Repeat until a solution is obtained

 MAD

– Multiple-wavelength anomalous dispersion phasing

 Molecular replacement

– Based on the existence of a previously solved structure with of a similar protein

– Rotate the molecular to fit the two Patterson maps

– Translate the molecule
38



Structure Refinement
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
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GSAS, SHELX, CRYSTALS…

Nonlinear least squares programs.  Vary atomic 

fractional coordinates x,y,z and temperature factors U

(isotropic) or uij (anisotropic) to obtain best fit between 

observed and calculated structure factors.



Books and on-line tutorials

 George E. Bacon, Neutron Diffraction, 3rd ed., Clarendon Press,  1975.

 Colin G. Windsor, Pulsed Neutron Scattering, Taylor & Francis, 1981.

 Chick C. Wilson, Single Crystal Neutron Diffraction From Molecular Crystals, World 

Scientific, 2000.

 M. F. C. Ladd and R. A. Palmer, Structure Determination by X-ray Crystallography, 

Third Edition, Plenum Press, 1994.

 J. P. Glusker and K. N. Trueblood, Crystal Structure Analysis: A Primer, 2nd ed., Oxford 

University Press, 1985.

 Interactive Tutorial about Diffraction: www.totalscattering.org/teaching/

 IPNS SCD tutorial by Paula Piccoli: www.pns.anl.gov/instruments/scd/subscd/scd.shtml
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