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C. G.  Shull et al, 1951                      Magnetic Structure of MnO

Paramagnet        Ferromagnet      Antiferromagnet
T>TC T<TC T<TN



Magnetic Neutron Scattering directly probes the electrons in solids

Killer Application: Most powerful probe of magnetism in solids!



d-electrons: 10 levels to fill

4f

5f



eg orbitals

t2g orbitals



eg orbitals

t2g orbitals

3d5 : Mn2+



eg orbitals

t2g orbitals

3d9 : Cu2+



Superexchange Interactions in Magnetic Insulators

RKKY exchange in Itinerant Magnets (eg. Rare Earth Metals)

H = Σi,j Jij Si Sj



T = 0.9 TC

T = TC

T = 1.1 TC



Magnetic Neutron Scattering

Neutrons carry no charge; carry s=1/2 magnetic moment

Only couple to electrons in solids via magnetic interactions

µn = - γ µ N σ

γ = 1.913       nuclear magneton=e ħ/2mn Pauli spin operator

How do we understand what occurs when a beam of 
mono-energetic neutrons falls incident on a magnetic material?



Calculate a “cross section”:

What fraction of the neutrons scatter off the sample with a particular:

a) Change in momentum:  κ =  k – k´

b)   Change in energy:  ħω = ħ2k2/2m  - ħ2k´2/2m 

• Fermi’s Golden Rule
1st Order Perturbation Theory

d2σ/dΩ dE´ :  k , σ , λ → k´, σ´ , λ´

=  k´/k  (m/2π ħ2)2 |< k´σ ´λ´ | VM | k σ λ >|2    δ (Eλ – Eλ
´+ ħω)

kinematic                   interaction matrix element             energy conservation



Magnetic Field 
from spin ½ of Electron: BS

Magnetic Field 
from Orbital Motion of Electrons: BL

e-

e-

VM: The potential between the
neutron and all the unpaired 
electrons in the material

VM = -µnB

n

Understanding this means understanding:



The evaluation of  | <k´σ´ λ´ | VM | k σ λ> | 2 is somewhat 
complicated, and I will simply jump to the result: 

d2σ/dΩ dE´ = (γ r0)2 k´/k  Σα β (δα β – κα κβ )

× Σ ΣAll magnetic atoms at d and d´ Fd´
*(κ)Fd(κ)

× Σ λ λ´ pλ < λ | exp(-iκ Rd´)Sα
d´| λ´ >< λ´ | exp(iκ Rd)Sβ

d | λ >

× δ (Eλ – Eλ
´ + ħω)

With κ = k – k´

This expression can be useful in itself, and 
explicitly shows the salient features of magnetic neutron scattering



We often use the properties of δ (Eλ – Eλ
´ + ħω) to obtain 

d2σ/dΩ dE´ in terms of spin correlation functions:

d2σ/dΩ dE´ = (γ r0)2/(2πħ) k´/k  N{1/2 g Fd(κ)}2

× Σα β (δα β – κα κβ ) Σl exp(iκ∙l)

× ∫ <exp(-iκ∙u0))exp(iκ∙ul(t))>  

× <S0
α(0) Sl

β(t)> exp(-iω t) dt

Dynamic Spin Pair Correlation Function

Fourier tranform: S(κ, ω)



Bottom Lines:

• Comparable in strength to nuclear scattering

• {1/2 g F(κ)}2 : goes like the magnetic form factor squared

• Σα β (δα β – κα κβ )       : sensitive only to those components 
of spin ⊥ κ 

• Dipole selection rules, goes like:      < λ´ | Sβ
d | λ > ;

where  Sβ =Sx, Sy (S+, S-) or Sz

Diffraction type experiments:

Add up spin correlations with phase set by κ = k – k´

Σl exp(iκ∙l) <S0
α(0) Sl

β(t)> with t=0



Magnetic form factor, F(κ),
is the Fourier transform of the 
spatial distribution of magnetic 
electrons –

usually falls off monotonically
with κ as π/(1 A) ~ 3 A-1



Three types of scattering experiments are typically performed:

• Elastic scattering
• Energy-integrated scattering

• Inelastic scattering

Elastic Scattering

ħω = (ħk)2/2m – (ħk´)2/2m =0
measures time-independent magnetic structure

dσ/dΩ = (γ r0)2{1/2 g F(κ)}2 exp(-2W)

× Σα β (δα β – κα κβ ) Σl exp(iκ∙l) <S0
α> <Sl

β>

S ⊥κ only           Add up spins with 
exp(iκ∙l) phase factor 



URu2Si2
κ = 0,0,1 

a*=b*=0: 
everything within a basal 
plane (a-b) adds up in phase

c*=1:
2π phase shift from top to 
bottom of unit cell 

π phase shift from corners 
to body-centre –good ….. 
but µ // κ kills off intensity!

Try κ = 1,0,0:

µ ⊥ κ good!

_
+

+

+

+



Magnetic Structures 
can be complicated

Incommensurate structures in 
rare earth metals

Muliple-k structures
in high-symmetry  
antiferromagnets



Mn2+ as an example: ½ filled 3d shell  S=5/2 

(2S+1) = 6 states :            |S(S+1), mz >

mz = +5/2 ħ, +3/2 ħ, +1/2 ħ, -1/2 ħ, -3/2 ħ ,–5/2 ħ

-5/2 ħ
-3/2 ħ
-1/2 ħ
½ ħ
3/2 ħ
5/2 ħH=0; 6 degenerate states

H ≠ 0; 6 non-degenerate states

< 3/2 | S- | 5/2 > ≠ 0  → inelastic scattering



Spin Wave Eigenstate:

“Defect” is distributed over
all possible sites

Magnetic sites are coupled by exchange interactions:

|5/2>     |5/2>   |5/2>  |3/2>   |5/2>  |5/2>   |5/2>

k k´ H = Σi,j Jij Si Sj



Inelastic Magnetic Scattering : |k| ≠ |k0|

Study magnetic excitations  (eg. spin waves)
Dynamic magnetic moments on time scale 10-9 to 10-12 sec

S(κ, ω) = n(ω) χ˝(κ, ω)

Bose (temperature) factor     Imaginary part of the 
dynamic susceptibility



Sum Rules:

One can understand very general features of the magnetic neutron
Scattering experiment on the basis of “sum rules”.

1.   χDC = ∫ (χ˝(κ=0, ω)/ω) dω   ;  

where χDC  is the χ measured with a SQUID

2.           ∫dω ∫BZ dκ S(κ, ω) = S(S+1)



T = 0.9 TC

Symmetry broken

T = TC

ξ∼ very large 
Origin of universality

T = 1.1 TC



M(Q)2

κ

Q=2π/d

In
te

ns
ity

T<TC

• Bragg scattering gives square of 
order parameter; symmetry breaking

• Diffuse scattering gives
fluctuations in the order 
parameter  

χ(Qord)



CsCoBr3

Bragg scattering

Q=(2/3, 2/3, 1)

I=M2=M0
2(1-T/TC)2β

Energy-integrated
critical scattering



Geometrical Frustration:

The cubic pyrochlore structure;
A network of corner-sharing tetrahedra

Low temperature powder 
neutron diffraction from 

Tb2Ti2O7



Local  Ising anisotropy
A3+ site within a distorted cube
of 8 O2- ions – unique direction 

pointing  into or out of tetrahedra

Tb3+  :  S=3, L=3, J=6

(2J+1)  = 13 states split by the 
crystalline electric field 



+/- |4>

~ 175 K

~ 20 K

~ 125 K

+/- |5>

Inelastic neutron scattering on polycrystalline Tb2Ti2O7

( ∆ : Ho2Ti2O7 ~ 240 K ; Dy2Ti2O7 ~ 380 K)



Time-of-flight neutron scattering from DCS on Tb2Ti2O7





One Transition in Zero Field

Five Transitions in Non-Zero Field



Conclusions:

• Neutrons probe magnetism on length scales from 
1 – 100 A,  and on time scales from 10-9 to 10-12 seconds

• Magnetic neutron scattering goes like the form factor 
squared (small κ), follows dipole selection rules 
< λ´ | S+,−,z | λ > , and is sensitive only to 
components of moments ┴ to κ. 

• Neutron scattering is the most powerful probe of 
magnetism in materials; magnetism is a killer 
application of neutron scattering (1 of 3).
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