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Why Vibrational Spectroscopy?

In chemistry we need the structure
and dynamics of mater

- Where atoms are Q-0

- What do they do
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Why Vibrational Spectroscopy?

The way an object vibrates reflects it’s
structure
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Inelastic neutron scattering
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How do atoms move?

- In @ molecule containing N atoms
there are, in principle, 3N degrees of

freedom.
- There are 3 translations and 3
rotations of the whole molecule

.- Consequently there are 3N-6 motions
that are not translations or rotations.
(A linear molecule the number is 3N-5
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How do atoms move?

s Ff
/

We call these motions the Normal
Modes of vibration.

For example, in water there are:

n =3XN —6=3

water atoms



What are Normal Modes

- In the harmonic approximation, a
Normal Mode is a vibrational state in
which atoms move in simple harmonic
motion around their equilibrium
positions.

- Any possible internal motion of the
molecule can be described by a
superposition of Normal Modes

Science & Technology Facilities Council



How do we find the Normal Modes?

. At the energy minimum, and using mass
weighted coordinates we can do a Taylor
expansion:

3N . . 3N 2y 7 mol
atoms a V atoms a V
Vmol :Vmol+ qu_l_ qiq'+...
" ZI: [//5% z-;l dg,9q; )"

The term ooV
dq,9q

i

Is called the force constant matrix
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How do we find the Normal Modes? (2)

By diagonalising the force constant
matrix we obtain the eigenvectors and
the eigenvalues A .

- The eigenvectors are the normal
modes,"Q

- And the frequencies are A =@/




Why using the Normal Modes?

The quantum problem, the Schrodinger
equation:

2

—h—V2w+Vw Ey
2m

Assuming separation of vibrational and
rotational parts!

2 3N-6 )2 3N 6
. h a Wwb
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Why using the Normal Modes?

2 3N-6 )2 3N 6
. h a Wwb

ﬂ Emol
2m — a VQ 2 VZ; Q szb Wwb

This can be separated into 3N-6 equations, one for

each normal mode. The energy and wavefunction
can be written as:

pr =5 v =[Tvl o=yl (0} v o)

If each wavefunction and energy satisfy:




Why using the Normal Modes?(2)

The energy levels of the harmonic oscillator are

E, = (nv +%jha)v n,=0,1,...

With n, the quantum vibrational number and o, the
classical frequency.

_3N—6 3N—6( 1)




The Vibrational Problem in the Solid State

In the solid state, the periodicity of the lattice
create phonon dispersion effects.

- The normal modes are now different on each point
of the first Brillouin zone

. The total number of vibrations is 3N, of which, 3
are acoustic modes and 3N-3 are called optical
modes.

DFPT allows the calculation of the normal modes
for an arbitrary point in the Brillouin zone by
interpolation.
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Dispersion, sampling

2400 == ; —

2200 - =

2000 - =

E 1800 - -
5 4 i J
O 1600 = =
% - - -
O- 1400 - - -
9 B
~ 1200 4 = -
g i J J
S 1000 m -
-§ 4 i J
S 800 - - =
= 4 i J
600 - - =

400 -

200 % i

7/; T ;f'
0 _%l T T T T T
0.0 0.1 02 03 04 05
(009
.l 7 Se pte m be r 2 O .l O ; Emi E icieSnci 8§chnology Facilities Council



Dispersion, sampling
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Powder Average
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Lattice dynamics

- Quasihamonic lattice dynamics is the most
efficient approach to carry out
atomistic calculations at low temperature
(approx half melting point temperature)

.- The quantity to minimise is the Helmholtz
Free Energy (not always possible):

Fy(r,T)=®(r)+F,(r.7)

e — -

oy
Foe,T)=—Y %ha)k +k,T h{l—e kﬂ] >

\ — —J

Chemical Physics 2005, 317, 119-129

CCCCCC



How do we probe the vibrations?

- We

need a probe to excite one of the

vibrational energy levels.

- We
- U

S
- U

can use photons and neutrons

sing photons we have IR and Raman
nectroscopy

sing neutrons we have Inelastic Neutron

Scattering INS




Inelastic Neutron Scattering

Transitions are proportional to the amplitude of
motion and the cross section of the nuclei.

Interaction between probe and nucleus

Simultaneous transfer of energy and momentum.
No selection rules.

$'Q.a,) =vyo, o V“l,(Q))zl exp =1 Q.Y "u,(Q)

Mitchell, P. C. H.; Parker, S. F.; Ramirez-Cuesta, A. J.; Tomkinson, J. Vibrational Spectroscopy

with Neutrons: with applications in Chemistry, Materials Science and Catalysis; World Scientific:
London, 2005



Why low temperature?
Amplitude of vibration

S.(Q,wv )7 =yo, [(Q "ul'(Q))z]" exp(—;(Q'ZV: Vuz (Q)]z}

n.

For atom i in mode v

1 a-
‘u; o coth( Vj
g T
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The TOSCA/VISION trajectory in S(Q,») Map
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Why low temperature?

- In an indirect geometry instrument (VISION),
fixed trajectories, most of the time need low
temperature

- In a chopper machine (SEQUOIA,ARCS) you
can change the incident energy and that
determines your lower Q at given energy.
You trade having to stitch spectra of
different energy resolutions
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Playing the game

/ Experiment \

Theory Modelling
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DFT calculations

- For the calculations shown in this talk | have
used CASTEP from Accelrys

- Interpolation algorithms of the dynamical
matrix allow the sampling of the Brillouin
zone with different grid sizes.

- In principle any calculation that gives the
eigenvactors and frequencies can be used
to determine the INS spectrum




Calculation of INS spectra
a-CLIMAX

- |t uses the isolated molecule approach for
the study of molecular solids.

- For extended solid calculations, with a fine
sampling of the Brillouin zone the
approximation is not longer necessary since
there is no distinction between external and
internal modes.

Computer Physics Communications 2004, 157, 226-238
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Calculation of INS spectra

- The normal modes are calculated for a large
grid of points in the reciprocal space. In the
example we mention here the lattice was
sampled as a 16x16x32 grid (the symmetry
of the system makes that number
substantially smaller).

.- The INS spectra is generated from the

eigenvectors and eigenvalues on every point
in the grid.
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LiH an example of k-space sampling
effects (extreme case)
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LiH an example of k-space

sampling effects
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Na Silica Gel/NaH SG
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Raney NI
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Effect of Brillouin sampling on surface modes

Neutron Energy Loss/meV
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Zeolite A

PCCP (33) 9661-9666, 2010
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Ammonia in Zeolite A
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Catalytic Hydrogenation of Organic
Molecules as Hydrogen Storage Vectors

SCHEME 1: Stepwise Hydrogenation of N-Ethyloarbazale to Perhydro-¥ethylearbazoke over Noble Meml Catalysts ithe
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Total energy C14H(13+2n)N'(C14H13N+nHz) (eV)
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SCHEME 2: Chemioml Structurs of All Six Possible Sterenisomers of the ¥-Perhydrocthylcarbozel That Are
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Catalytic Hydrogenation of Organic
Molecules as Hydrogen Storage Vectors

124 J Phys Chem C Vol T4, No. 21 2000 Eblagon e al.
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Revisiting CH3/Pd(111)
(how things changed in 10 years)




Force field fitting

S(Q,w)

= E T AR

-

L
P
A ms. ams mmm pEs = s

0 500 1000
Energy transfer/cm™!

Fig. 2 Comparison of the INS spectrum of the deactivated catalyst (solid
line) and the results from the CLIMAX analysis of the spectrum (dashed

line).




Final thoughts

Modelling is a vital part in the interpretation of
catalysis studies with INS.

- Without modelling there is less or even little
understanding of INS spectra

However:

- Catalysis experiments with neutrons are
particularly demanding and difficult.

- Sample environment is also very important.

But above all, it is the experimental design, the
know how, what will give you a successful
experiment!
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