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Why Vibrational Spectroscopy?

In chemistry we need the structure 
and dynamics of mater

• Where atoms are• Where atoms are

• What do they do



The way an object vibrates reflects it’s 
structure

Why Vibrational Spectroscopy?



Inelastic neutron scattering



Comparison of IR, Raman and INS spectra of 

N-phenylmaleimide



How do atoms move?

• In a molecule containing N atoms 
there are, in principle, 3N degrees of 
freedom.

• There are 3 translations and 3 • There are 3 translations and 3 
rotations of the whole molecule

• Consequently there are 3N-6 motions 
that are not translations or rotations. 
(A linear molecule the number is 3N-5)



How do atoms move?

We call these motions the Normal 
Modes of vibration.

For example, in water there are:

363 =−×= atomswater Nn



• In the harmonic approximation, a 
Normal Mode is a vibrational state in 
which atoms move in simple harmonic 
motion around their equilibrium 

What are Normal Modes

motion around their equilibrium 
positions.

• Any possible internal motion of the 
molecule can be described by a 
superposition of Normal Modes



• At the energy minimum, and using mass 
weighted coordinates we can do a Taylor 
expansion:

How do we find the Normal Modes?
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Is called the force constant matrix



By diagonalising the force constant 
matrix we obtain the eigenvectors and 
the eigenvalues λ .

How do we find the Normal Modes? (2)

• The eigenvectors are the normal 
modes,

• And the frequencies are 2

νν ωλ =
Q

ν



Why using the Normal Modes?

The quantum problem, the Schrödinger 
equation:
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Why using the Normal Modes?
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This can be separated into 3N-6 equations, one for 
each normal mode. The energy and wavefunctioneach normal mode. The energy and wavefunction
can be written as:
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Why using the Normal Modes?(2)

The energy levels of the harmonic oscillator are
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With nν the quantum vibrational number and ων the 
classical frequency.



The Vibrational Problem in the Solid State

• In the solid state, the periodicity of the lattice 
create phonon dispersion effects.

• The normal modes are now different on each point 
of the first Brillouin zone

• The total number of vibrations is 3N, of which, 3 
are acoustic modes and 3N-3 are called optical are acoustic modes and 3N-3 are called optical 
modes.

• DFPT allows the calculation of the normal modes 
for an arbitrary point in the Brillouin zone by 
interpolation.



Dispersion, sampling
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Dispersion, sampling
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Powder Average
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Lattice dynamics
• Quasihamonic lattice dynamics is the most 

efficient approach to carry out 
atomistic calculations at low temperature 
(approx half melting point temperature) 

• The quantity to minimise is the Helmholtz 
Free Energy (not always possible):Free Energy (not always possible):
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How do we probe the vibrations?

• We need a probe to excite one of the 
vibrational energy levels.

• We can use photons and neutrons

– Using photons we have IR and Raman – Using photons we have IR and Raman 
spectroscopy

– Using neutrons we have Inelastic Neutron 
Scattering INS



Inelastic Neutron Scattering

• Transitions are proportional to the amplitude of 
motion and the cross section of the nuclei.

• Interaction between probe and nucleus

• Simultaneous transfer of energy and momentum.

• No selection rules.• No selection rules.
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Why low temperature?
Amplitude of vibration
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The TOSCA/VISION trajectory in S(Q,ω) Map
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Why low temperature?

• In an indirect geometry instrument (VISION), 
fixed trajectories, most of the time need low 
temperature

• In a chopper machine (SEQUOIA,ARCS) you 
can change the incident energy and that 
determines your lower Q at given energy. 
You trade having to stitch spectra of 
different energy resolutions



Playing the game

Experiment

17 September 2010

Theory Modelling



DFT calculations

• For the calculations shown in this talk I have 
used CASTEP from Accelrys

• Interpolation algorithms of the dynamical 
matrix allow the sampling of the Brillouinmatrix allow the sampling of the Brillouin
zone with different grid sizes.

• In principle any calculation that gives the 
eigenvactors and frequencies can be used 
to determine the INS spectrum



Calculation of INS spectra

a-CLIMAX

• It uses the isolated molecule approach for 
the study of molecular solids. 

• For extended solid calculations, with a fine • For extended solid calculations, with a fine 
sampling of the Brillouin zone the 
approximation is not longer necessary since 
there is no distinction between external and 
internal modes.

Computer Physics Communications 2004, 157, 226-238
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Calculation of INS spectra

• The normal modes are calculated for a large 
grid of points in the reciprocal space. In the 
example we mention here the lattice was 
sampled as a 16x16x32 grid (the symmetry 
of the system makes that number 

17 September 2010

of the system makes that number 
substantially smaller).

• The INS spectra is generated from the 
eigenvectors and eigenvalues on every point 
in the grid.



Example MgH2
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LiH an example of k-space sampling 
effects (extreme case)
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LiH an example of k-space 
sampling effects

Experiment
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Na Silica Gel/NaH SG
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Raney Ni



Raney Ni
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Effect of Brillouin sampling on surface modes
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Zeolite A

PCCP (33) 9661-9666, 2010



Ammonia in Zeolite A





Catalytic Hydrogenation of Organic 
Molecules as Hydrogen Storage Vectors



Catalytic Hydrogenation of Organic 
Molecules as Hydrogen Storage Vectors 
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International Journal of Hydrogen Energy, In Press



Catalytic Hydrogenation of Organic 
Molecules as Hydrogen Storage Vectors



Revisiting CH3/Pd(111)
(how things changed in 10 years)



Force field fitting



Final thoughts

• Modelling is a vital part in the interpretation of 
catalysis studies with INS.

• Without modelling there is less or even little 
understanding of INS spectra

However:However:

• Catalysis experiments with neutrons are 
particularly demanding and difficult.

• Sample environment is also very important.

• But above all, it is the experimental design, the 
know how, what will give you a successful 
experiment!
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