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Biomass consists of cellulose, hemicellulose and lignin

The crystallinity of cellulose and its inaccessibility make it difficult to break down into fermentable sugars



Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D
Slide 4

U.S. Department of Energy Genome Programs website http://genomics.energy.gov

A future, large-scale, cellulosic ethanol production facility. (1) Biomass from trees, grasses, or agricultural wastes is harvested and 
delivered to the biorefinery. (2) Biomass is ground into small, uniform particles. Thermal or chemical pretreatment separates cellulose, a tough polymer of tightly bound 
sugar chains, from other biomass materials and opens up the cellulose surface to enzymatic attack. (3) A mix of enzymes is added to break down cellulose into simple 

sugars. (4) Microbes produce ethanol by fermenting sugars from cellulose and other biomass carbohydrates. (5) Ethanol is separated from water and other components 
of the fermentation broth and purified through distillation.
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We are investigating a variety of pretreatments of biomass in order 
to improve its catalytic conversion to various products. 

These include ionic liquids, thermochemical, mild acid, alkali 
mercerization, AFEX, and biological and oxidative pretreatment 
processes.

Techniques used include time-resolved and multilength scale 
microscopy, diffraction, mass spec and theoretical approaches

Problem: Cellulosic biomass pretreatment is expensive and 
inefficient

Advantages of AFEX over other processes:
• High Catalyst Recovery (>98%)
• Minimal Water Usage (3-20 fold lower)
• Minimal Biological Inhibitors Formed (e.g. furans) 
• Flexible Feedstock (e.g. animal feed)

We are using neutron and crystallorgaphy, modeling, and enzymatic 
studies to understand structural changes that occur during  1) AFEX 
pretreatment 2) how catalysis depends on these changes.

These insights are guiding the development of  a new 
optimized process in collaboration with GLBRC 
(Shishir Chundawat).
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Providing the First Atomistic Structures of Cellulose 
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Improving AFEX Pretreatment
Results from neutron and X-ray crystallography and theory have lead to optimized conditions that improve 

hydrolysis of AFEX pretreated biomass and are leading to theoretical studies to create better cellulases

Amine
Amine-Cellulose I

Amine

Nishiyama,  Langan, Chanzy
J.Am.Chem Soc. 2002

Nishiyama,  Sugiyama, Chanzy , Langan
J.Am.Chem Soc. 2003 Wada, Chanzy, Nishiyama, Langan

Macromolecules, 2004

Wada, Nishiyama, Langan
Macromacromolecules. 2006

Wada, Heux, Nishiyama, Langan
Cellulose, 2009

Time-resolved X-ray  microprobe studies reveal 
penetration of catalyst in biomass in situ and as 

its working (Wada, et al. Cellulose 2010)

Wada, Nishiyama, Langan
J. Am. Chem. 2010
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Optimizing AFEX to incorporate conversion to cellulose III
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Enzyme hydrolysis assays demonstrate greater efficiency of AFEX-III

Comparing pretreatments Developing biocatalyst cocktails that are tailored to AFEX-III

Wada et al. Biomacrol.
Chundawat et al. Science
Chundawat et al. PNAS
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Surface chains in cellulose III have similar conformations to solvated 
oligomers

Shen, Langan, Gnanakaran, J. Am. Chem 2009



www.glbrc.org
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Surface chains in cellulose III are hydrated like solvated oligomers
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AFEX-III (NH3 at 25oC for 2 hrs) conversion of corn stover
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Summary

We have provided atomistic details of the structure of cellulose (and biomass) and how it changes 
during pretreatment. 

Cellulose chains on the surface of cellulose fibrils have memory of their crystalline cores.

Cellulose chains on the surface of cellulose III fibrils are similar to those in solution.

An optimized AFEX-III pretreatment process significantly increases the conversion of corn stover.

Co-optimization of substrate pretreatment and enzyme cocktails is essential.
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Problem: Xylose from cellulosic biomass cannot be efficiently 
fermented to ethanol

Cost-effective and sustainable production of biofuels from cellulosic 
biomass will require the use of all sugars

Several different Metabolic Engineering and Systems Biology approaches 
are being taken to enable xylose fermenation in S. cerevisiae. 

We are determining the mechanism of Xylose Isomerase (XI) using 
neutron crystallography and quantum enzymology and reengineering for 
optimized catalysis in S. cerevisiae.

xylA
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Xylose Isomerase has been studied extensively by X-ray 
crystallography but its catalysis is still not understood

H transfer occurs throughout this multistep catalytic process. H and its movement are invisible to X-rays. 

Many proposed mechanisms are consistent with X-ray structures but differ in the movement of H.

Structure determined by X-ray crystallography
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Xylose Isomerase

No Metal

Low pH

Snapshots of different stages of the reaction reveal the 
movement of H during catalysis

Snapshot of different stages of the reaction reveal the possible 
movement of H during catalysis
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Katz et al. PNAS 2006; Kovalevsky et al., Biochem, 2008; Kovalevsky et al. Structure 2010

Adams et al, Acta Cryst 2009; Afonine et al. Acta Cryst 2010; Fenn et al. Structure
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Quantum Enzymology (QuE) studies 
of xylose isomerase

Neutron crystallography has provided snapshot of different stages of the reaction, revealing 
the possible movement of H during catalysis.

However, to fully characterize the reaction pathways, transition states, and energy barriers 
that connect these different stages a Quantum Mechanics approach is required. Convention 
QM/MM boundary errors, don’t work.

QuE combines neutron crystallography with 
unique LANL quantum chemistry algorithms to 
model of reactions catalyzed by enzymes.

Powerful new approach for
understanding and predicting enzyme mechanism
in silico mutagenesis
active site engineering.
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Re-engineering Xylose Isomerase for lower pH and better 
Kmxylose/Kixylitol using results from PCS

Initial Goals:
1. Redesign M1 site to prevent protonation and metal ejection at low pH
2. Lower pKa of selected residues to enhance ring opening at low pH
3. Reduce Km by optimizing water template for cyclic sugar
4. Increase Kcat for xylose and increase Ki for xylitol by careful optimization of 

transition state binding pocket using QuE.
5. Introduce improved xylA into S. Cerevisiae for xylose utilization

Progress:
1. Expression system (pETCk4) designed, xylA with HisTAG has been expressed.
2. Easily purified and crystallized (library of ~100 clone generated).
3. Bioanalyzer assay for both glucose and xylose.
4. Using directed evolution we have already lowered pH of activity
5. NDA with Great Lakes Bioenergy Research Center for engineering of
S. Cerevisiae (Trey Sato)
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Summary

Neutrons are being combined with theory & other experimental capabilities to provide new insights 
into biocatalysis

These insights are guiding the design of improved and new synthetic biocatalysts.

They are also guiding how biological substrates can be manipulated to enhance biocatalysis.

These advances help address several major problems for DOE missions in energy and the 
enivironment.

The future development of the effective application of neutrons in biocatalysis will depend on several 
factors including (just personal opinion!).

1. Easy and simultaneous access to multiple complementary experimental platforms
2. Better access to large-scale modern computing facilities that allow complementary QM (QuE), MD 

and AB studies.
3. A new approach to bioengineering (synthetic biology) that allows co-optimization of different 

enzyme properties, and co-optimization of enzyme and microbe performance.
4. Co-optimization of biocatalyst and biosubstrate
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Neutron Computational Tools Marat Mustyakimov (B8), Pavel Afonine (LBNL), Paul Adams (LABNL), Axel Brunger, Tim Fenn.
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