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1994 Nobel Prize in Physics



The moving finger …

LaMnO3



Useful properties of thermal neutrons

 Thermal neutrons have de Broglie wave-lengths comparable to typical 
interatomic distances and hence wavevectors, k = 2π/ λ, that are on the 
scale of the Brillouin zone.
– λ ~  0.1 - 10 Å
– k ~ 0.6 - 60 Å-1

 Thermal neutrons have energies that are in the same range as those of 
typical excitations in condensed matter.

– ε ~ 0.8 - 800 meV
 Thermal neutrons interact weakly with condensed matter.

– The Born approximation is valid.
– As a consequence, we need large samples.

 Thermal neutrons couple with both nuclei and magnetic spins
– Nuclear force with nuclei ⇒ lattice excitations
– Magnetic coupling to unpaired electrons ⇒ magnetic excitations



Range of Inelastic Neutron Scattering Science 
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Neutron Conversion Factors

E (meV) = 81.80 λ-2 (Å-2)
E (meV) = 2.072 k2 (Å-2)
E (meV) = 5.227 × 106 τ -2(m2/µsec2)

T (K) = 11.604 E (meV)

where τ is the time of flight, or inverse velocity (τ = 1/v).



Inelastic Scattering Processes

Conservation of energy

Conservation of “momentum”

Ei, ki

Ef, kf

φ



Neutron Scattering Cross Sections
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S Q( ) = S Q,ω( )dω∫ = I Q,0( ) = G r,0( )exp iQ ⋅ r( )∫ dr
where G r,0( ) = δ r( ) + g r( ) so that
S Q( ) =1+ g r( )∫ exp iQ ⋅ r( )dr

G(r, t) dr gives the probability that, given a nucleus at the origin at r = 0, 
any nucleus (the same one or a different one) will be found 

within volume dr at r and at time t

S(Q) ➡ Instantaneous Correlations
S(Q,ω=0) ➡ Static Correlations



Reciprocal Space Construction
The scattering triangle



Neutron Laue Diffraction
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ki

Q

ki = 2π / λi

kf = 2π / λf

Q = ki - kf



Ewald Spheres
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kf = 2π / λf

Q = ki - kf



From the scattering triangle, we  can see that  

   from which it follows that
 
    

and so putting Ef =Ei - ε

we get
 

This equation gives us the locus of (Q, ε) for a given scattering angle ψ.

(N.B. we can write ℏ2/2m=2.072 for E(meV) and Q in Å-1).

Q

-kf

ki ψ

Kinematic Range



Time-of-Flight Spectrometer

ARCS



Locus of Neutrons in (Q,ε) Space
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Harmonic Oscillator
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In general, the neutron can 
excite n phonons at once
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V = ½kx2



Scattering in ZrH2



(Q,ε)-Dependence of ZrH2



Processes in which a single excitation (quantum) is created or destroyed in the sample by the neutron.

Examples:
(i)                    Lattice vibrations: 
 
 
 
 

e.g. simple linear chain of atoms, mass m, coupled together by bonds (“springs”) with stiffness S.  

Elementary excitations are wave-like with λ = 2π/q ; 
Displacement of n th atom is:
            
   where    
 
A quantum, energy ħωq is called a phonon. 

a

λ

 
Coherent Excitations



The neutron cross section for creating a single quantum 
(phonon or magnon) is:

The cross section for annihilation is:

The delta functions show that we get scattering only when:

    and  

These conditions enable us to measure the dispersion relations.

Cross Section for Coherent Excitations



Phonon Dispersion in MgB2

E1uA2uE2gB1g



Phonon Density-of-States
When single crystals are available, 
phonon dispersion relations (ω vs q) can be 
measured.

However, it is often useful to measure the 
phonon density-of-states
i.e. the sum over all phonon modes at each energy

In the incoherent approximation,
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Strictly speaking, we measure a sum
of the partial densities-of-state of each 
element weighted by σi/Mi
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Vanadium: A Perfect Incoherent Scatterer



Multi-phonon Scattering

0 20 40 60 80 100
0.00

0.00

0.01

0.01

0.02

Energy [meV]

S(
ω

)

Vanadium Cross Section
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Multi-phonon (n > 1) scattering becomes larger with increasing Q.
Eventually, the different terms merge into a single recoil peak.

〈hω〉 = hQ2/2M
N.B. S(Q) = ∫S(Q,ω)dω = 1 for all values of Q (theoretically)



 With a coherent scatterer, it is necessary to sum over a wide range of Q 
to generate an accurate phonon density-of-states 

MgB2: A Strongly Coherent Scatterer
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Phonons in Superconducting LaFeAsO1-xFx

ARCS Data
Christianson et al, PRL to be published
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monochromator

Flexible inelastic instrument used at steady state neutron sources, 
in which Ei, ki and Ef, kf are selected by Bragg diffraction from a 
single crystal monochromator and analyzer

Varying two lengths ki , kf and two angles ψ, ϕ allow flexible 
scans to be chosen, e.g. Constant Q or Constant ε

Triple Axis Spectrometer



IN20 (ILL)

Triple Axis Spectrometer

 Supreme instrument at a 
reactor to measure 
excitations for 40 years

 Every  research reactor has 
one or a suite of TAS 
optimised for different 
energy ranges

 Design principles essentially 
unchanged

 Constantly evolves as 
technology improves
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Q

h
ω

Intensity

Monochromator ⇒ EI

   Analyser   ⇒ EF

   Scattering angle,  ψ  ⇒ |Q|
   Crystal orientation, φ  ⇒ Q

          -  One point per setting  - Serial Operation

Shielding

Sample

Detector

Analyser Shutter
Monochromator

ψ

φ

Triple Axis Spectrometer



kf

b*

a*

q

G

ki

φ

ψ

We have the flexibility to keep |ki| or |kf | constant.  
Below is an example of a constant Q scan with fixed |kf |.

 Constant Q-scans
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ħωq
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Constant Q scan

Used to measure slowly
varying dispersion relations.

 

Constant ε scan
    
Used to measure steep
Dispersion relations. 

Constant Q and Constant ε Scans



Constant Q scan

Constant E scan

Examples of Constant Q and Constant ε Scans



The corresponding uncertainties in the energy and the wavevector are

                       and  

Contribution to energy resolution of spectrometer arising
from monochromator:

dM

ki

θθ

Uncertainty in λM due to angular
collimation δθ and fluctuation in plane spacing of 
crystal δdM is :

The analyzer has similar contributions to the uncertainties in Ef  and kf . 

Triple Axis Resolution



The wavelength spreads from monochromator and analyser combine with the 
angular collimations before and after the sample to produce a four 
dimensional resolution function for the triple axis R(   ,ε). The width of a peak 
in a scan will be determined by the convolution of the cross section with this 
resolution function.

The form of the resolution function is Gaussian: 

where    denotes a four dimensional vector    = (   , ε).
A contour of R is an ellipsoid in this four dimensional space (Qx, Qy, Qz, ε ).  

To visualize this we will represent the ellipsoid at its half height contour.

Resolution (contd)



It turns out that the components of the resolution matrix M are highly correlated in 
the ε, q⊥ plane, where q⊥ is the component of q perpendicular to the scattering vector Q. 
The resolution function can be a very elongated cigar shape in this plane.  This can lead 
to strong focussing effects

focused scandefocused scan
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   counts

 ħωq

ħωq

ε

q⊥q

   ε

  counts

   ħωq

q⊥

ε

ħωq

 

 

Focussing in Triple Axis Scans





Beyond the Triple-Axis (SPINS/NIST)

Monochromator

Multicrystal Analyzer

Sample

Single Detector
Δ2θ

L = distance from sample to HF analyzer
wa = total width of HF analyzer

Δ2θ = wa sinθa/L ~ 9 degree for Ef=5 meV at SPINS

Relaxed Q-resolution

Useful for studying systems with short-range correlations

Multiple Analyzers



Beyond the Triple-Axis (SPINS/NIST)

Sample

Flat Analyzer

Position-Sensitive
Detector

Δ2θi

θa
 θa

i

θa
i = θa + Δ2θi = θa - atan(x sinθa/(L+xcosθa))

kf
i = τa/2sinθa

i

Qi = k - k′i

Survey (ω,Q) space by changing the
incident energy and scattering angle

Probes scattering events at different energy 
and momentum transfers simultaneously

hω

Q

~1meV

Position-Sensitive Detectors



Types of TOF Spectrometer

 Direct Geometry
– Fix incident energy with a chopper or crystal monochromator
– Determine final energy from total neutron time-of-flight

e.g. PHAROS, LRMECS, HRMECS, HET, MARI, MAPS, INC,
 (ARCS, SEQUOIA, HYSPEC, CNCS…), IN4, IN5, IN6, DCS, 

FOCUS
 Indirect Geometry

– Fix final energy with crystal analyzers
– Determine incident energy from total neutron time-of-flight

e.g. QENS, IRIS, OSIRIS, LAM80
(SNS Backscattering Spectrometer…)

IN10, IN13, NG2



Direct Geometry vs Indirect Geometry

Direct geometry
•Fixed incident energy
•All final energies

 →   -∞ < hω < E

Indirect geometry
•All incident energies E
•Fixed final energy E′

 →   -E′ < hω < ∞

E fixed

sample

detectors

White beamAnalyzer
Crystals
E′ fixed

Intrinsically parallel operation

Simultaneously measure:
•Wide range of energy transfer
•Large number  of detectors
→ maps of scattering intensity



SNS Instruments



 Primary Flight Path: 11.6m
 Secondary Flight Path: 3m
 Angular range : 
      -30°-150° (Horizontal)
      -30°-30°  (Vertical)
 Incident energy : 10meV-1.5eV
 Energy resolution : 2-5%Ei
 Detectors : Position sensitive 
 Supermirror guide
 Oscillating collimator
 Provision for polarization analysis

Direct Geometry Chopper Spectrometer

ARCS - A wide Angular Range Chopper Spectrometer



Chopper Resolution
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Self-Shielding

k

 k′

t
γ

φ
Transmission = exp(-µt secγ)

Self-shielding:

       (in transmission)

          (in reflection)

exp −µi t sec γ( )[ ]− exp −µ it sec φ − γ( )[ ]
µ f tsec φ − γ( ) − µ f t sec γ( )

exp µ it sec φ − γ( ) − µi t sec γ( )[ ]−1
µ f t sec φ − γ( ) − µ f t sec γ( )

µ = µs + µa (λ/λ0)    λ0 = 1.8Å



This does the equivalent job on a pulsed source to the triple axis spectrometer 
at a reactor.

It is an example of an indirect geometry instrument in which the time of flight 
of the incident neutrons determines k i and a Bragg reflection from an analyzer 
determines k f.

Crystal Analyzer Spectrometer

PRISMA



a*

b*

n

ψ

φ

-kf

φ

ki

The reciprocal space construction for a single detector is shown above.  k f is fixed 
by the analyzer d-spacing dA and 2θA the scattering angle.  Each time bin in the 
time-of-flight spectrum corresponds to a different k i and hence a different 
scattering triangle.



 The scan along the [10.0] direction.

๏ The flattening of the TA-
mode is similar to that 
seen in the covalent 
semiconductors such as Ge 
or GaAs.

๏ The optic modes are very broad. This 
is probably due to a coupling to the 
lattice disorder.

The Dynamics of Ice Ih



Magnetic Cross Section

 If we assume that the motion of an ion is independent of its spin orientation:
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 i.e. the inelastic cross section is just the Fourier transform in time and space of 
the spin-spin correlation function. 



Fluctuation-Dissipation Theorem

 We have written the cross section as proportional to a correlation function, 
i.e.

 In fact, what the neutron is doing is applying a very small perturbation to the spin 
system.

 If the perturbation is small, then the response of the system is proportional to the 
spectrum of spontaneous fluctuations. 
(Fluctuation-Dissipation Theorem).
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 i.e., the inelastic cross section is just the dissipative part of the 
(Q,ω)-dependent magnetic susceptibility. 
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Kramers-Kronig Relations

 This dynamic susceptibility is related to the static susceptibility measured in a 
conventional susceptometer by the Kramers-Kronig relations:

 So the cross section can be rewritten: 
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 P(Q,ω) is just a normalized spectral or “shape” function
–  e.g. a delta function or a Lorenzian

 χ’(Q→0,0) is the bulk static susceptibility 

N.B. S(Q,ω) is the neutron scattering law here, not the F.T. of the spin. 



Simple Examples

 I will discuss three simple model systems before showing examples of 
inelastic neutron scattering experiments.

 The first two are single-ion models, i.e. there is no interaction between 
spins on neighboring sites.  Therefore:
– The excitation energies are Q-independent
– The cross sections follow a single-ion form factor

 The models are:
1. Simple Curie paramagnet
2. Van Vleck paramagnet
3. Spin waves in an ordered system (ferromagnet or antiferromagnet)



Curie Paramagnet
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 Since the spins are non-interacting, we can assume that 
it costs no energy for them to flip, i.e. P(ω) = δ(ω)

 In the limit of ω→0, {n(ω)+1} → kBT/ω

 The bulk susceptibility for a simple paramagnet, with non-interacting spins is simply: 
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 If the spins are fluctuating, the peak is broadened (quasi-elastic).  
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Neutron measurements of spin dynamics have been important for measuring 
relaxation rates of local moments coupled to conduction electrons .

The temperature dependence Γ(T) has distinctive behaviour in heavy fermions, 
Kondo lattice and intermediate valence materials.

In particular Γ(T→0) gives a measure of the “Kondo temperature”, a key parameter 
in strongly correlated electron systems.

Fluctuating Moment Systems  
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Quantum Critical Scaling in UCu5-xPdx
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M.C.Aronson et al, Phys. Rev. Lett. 75, 725 (1995) A. Schroder et al, Nature 407, 351 (2000)

cf CeCu5.9Au0.1



Van Vleck Paramagnet

 In a Van Vleck paramagnet, the ground state is non-
magnetic, but there is a magnetic state at finite energy, 
e.g. at ω = Δ, with transitions from the ground state 
induced by a dipole matrix element. 

 To calculate the neutron cross section, let’s start with 
the spin-spin correlation function, which is really a sum 
of dipole matrix elements:
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if we assume:
• that both levels are singlets
• spins on different sites do not interact (Mαβ is the dipole matrix element) 
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Van Vleck Paramagnet (contd)

 We can show that both forms of the cross section 
are equivalent if we set:

and use {n(ω)+1} = 1/{1-exp(-ω/kBT)} = -n(-ω)
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 This is the standard expression for a Van Vleck paramagnet. 
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the inelastic peak energies and intensities.
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Crystal Field Spectroscopy



Δ

Simple example of excitations between 
two CF states.

In the absence of interactions the spectrum 
consists of two delta functions at ±Δ -Δ    0    Δ

-Δ      0        Δ
ω

S(ω)

Width 
Γ

Spin-lattice relaxation, due to spins 
interacting with phonons or conduction 
electrons results in the excitations having 
a linewidth Γ equal to the reciprocal of 
the relaxation time, 
Γ = 1/τ

Spin Lattice Relaxation



Examples of Spin Lattice Relaxation



Principle of Detailed Balance
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 In the Van Vleck example, the energy 
gain peak was smaller than the energy 
loss peak.

 The ratio between the two is given by 
the principle of 

Detailed Balance
S(-ω) = exp(-ω/kBT) S(ω)

 All systems in thermal equilibrium obey 
this principle.

 This can be a useful sanity check:
– self-consistency of data analysis
– the cryostat is working



Spin Waves

 In most magnetic systems, there is a coupling 
between neighboring spins
– e,g, Heisenberg exchange

 When one spin changes direction, it induces a 
wave-like disturbance of all the neighboring spins.
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Hex = − Jij
i, j
∑

r 
S i .
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S j



Spin Waves (contd)

 The elementary excitations of an ordered magnet are propagating spin deviations, 
i.e., spin waves.

 Because neighboring spins are coupled, their excitation energies are q-dependent, 
with dispersion relations, e.g.,

Where

 A quantized spin wave excitation is known as a magnon.
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In cubic symmetry

D = 2JSa2



Spin Waves Correlation Functions (formal)

 The spin wave cross section can be derived from the earlier formulae by defining 
“creation” and “annihilation” operators

where                                   and

 Using <â+
q âq > = <nq> and <âqâ+

q> = <nq+1> and 
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Spin Wave Cross Section (Heisenberg Ferromagnet)

 Using

 e.g. spin waves in La1.2Sr1.8Mn2O7

– cf Van Vleck Paramagnet 
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Can also be expressed in terms of the components of Q 
 parallel and perpendicular to the incident wavevector ki:
       

  
 
  Hence it follows that

 

   and
 
 

Q

 Q⊥
Q

ki

-kf

ψ

Q⊥ = kf sin (ψ)     Q  = ki – kf cos (ψ)

This results in the surface of a paraboloid, with the apex in
(Q//, Q⊥, ε)-space at the point (ki, 0, Ei).

Kinematics Again (in a single crystal)



Kinematics in a Single Crystal (contd)

ki

-kf
Q

In a single crystal experiment,
we need to superimpose the 
scattering triangle on the 
reciprocal lattice.

Locus of constant w is a Q-circle 
of radius kf centered on Q = ki

[h,0,0]

   
 [0

,k
,0

]  
  



La0.7Pb0.3MnO3 - CMR Ferromagnet
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Spin Waves in a CMR Ferromagnet

Heisenberg ferromagnet (nearest neighbor) 
   2JS = 8.8 ± 0.2 meV

Double exchange model:

W = 1.6 eV    (half band-width)
JH = 3.2 eV    (intra-site exchange)

Perring et al., Phys Rev. Lett. 77, 711 (1996)
ξξ0        000    ξ00     ξξ0    ξξξ          000 ξ00     ξξξ



MAPS spectrometer

Position sensitive 
detector array

Specification:

• 20meV< EI< 2000meV

• lmod-chop = 10m

• lsam-det   = 6m

• low angle bank:  3°-20°   
  high angle bank: → 60°

• Δhω/EI = 1- 5% (FWHH)
    ~ 50% more flux
 or    ~ 25% better resln.

• 40,000 detector elements
  2500 time channels
→108 pixels ≡  0.4GB datasets

Background chopper

Monochromating chopper

Sample position

cf SEQUOIA and ARCS at SNS



MAPS Under Construction



Spin Waves in Cobalt

H = -J Σ Si.Sj

12SJ = 199±7 meV
      γ = 69 ±12 meV



KCuF3 - 1D Spin-1/2 Antiferromagnet 

Faddeev and Takhtajan 
(Phys. Lett 85A 375 1981) 
suggested excitation spectrum:
not spin waves : S=1
but pairs of “spinons” : S=1/2
 ω = ω1(q1) + ω2(q2)
 q  = q1 + q2

→ continuum of excitations

 ωL= (π/2) J | sin(πq) |
   ωU  =  π   J  | sin(πq/2)|

Numerical and analytic work:

(π/2).J (π/√2).J



Low-Dimensional Excitations
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 KCuF3 Excitations

• Broad peak can only be 
explained by continuum
First clear evidence of continuum 
 scattering in S=1/2 chain

• Intensity scale:
 A = 1.78 ± 0.01   ± 0.5
c.f. numerical work:
 A = 1.43
• Coupling constant:
 J = 34.1 ± 0.6 meV

D.A.Tennant et al, Phys. Rev. Lett. 70 4003 (1993)



k ⊥ c



Stephen Nagler (ORNL)
Bella Lake(Oxford)
Alan Tennant (St. Andrews)
Radu Coldea(ISIS/ORNL)

Direct observation 
of the continuum

KCuF3 Excitations (again)



CuGeO3 1D Spin-Peierls Compound
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M.Arai et al., Phys. Rev. Lett 77 3649 (1996)



Antiferromagnetic Dimers
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Orbitally-Driven Dimerization in La4Ru2O10
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Dimerization in La4Ru2O10

The intensity of the inelastic peak 
at ~ 45 meV shows the strong 

|sin(q)|2 modulation characteristic
of dimer interactions with a length 
scale consistent with neighboring
ruthenium ions.

Qc Qb

h



Pixel Power*

 Computing power + good analysis software

   visualization     + analysis 
Integral part of the spectrometer :
(“tertiary spectrometer”)
   detector elements          energy bins    pixels
Typical     200-2000      200      105

MAPS              40000  200    ~107

* © Gabriel Aeppli



Current Analysis Software

GUI 
interface

run info.
sample
2D & 
1D cuts

2D slices 
in (Q,ω)

1D cuts 
in (Q,ω)

MSLICE - Radu Coldea (ISIS/ORNL)



What Now?

 Inelastic neutron scattering has made a vital contribution to our understanding of 
condensed matter.

 Triple-axis and time-of-flight methods play complementary roles.
 New techniques revitalize the subject and present new challenges.
 The Spallation Neutron Source will continue this process into the future. 


