
 XAL APPLICATION PROGRAMMING FRAMEWORK*

J. Galambos, C., M. Chu, W.-D. Klotz, T. Pelaia, A. Shishlo
SNS, Oak Ridge National Laboratory, C.K. Allen, C. McChesney
Los Alamos National Laboratory, I.Kriznar, M. Plesko, A. Pucelj

Cosylab, Ljubljana Slovenia

Abstract

The Spallation Neutron Source (SNS) is using a Java
based framework for application program development.
The framework, called XAL, is designed to provide an
accelerator physics programming interface to the
accelerator. Much of the underlying connections to the
EPICS control system are hidden from the user. Use of
this framework allows writing general-purpose
applications that can be applied to various parts of the
accelerator. Also the accelerator structure is initiated from
a database, so introduction of new beamline devices or
signal modifications are immediately available for all
XAL applications. An on-line model is included in this
framework for quick beam tracking. The overall
framework is described, and example applications are
shown.

1 INTRODUCTION
A part of the SNS accelerator physics activities include

preparation of an application programming interface to
the machine. This interface augments the EPICS [1]
control system, and is aimed at applications that are more
complicated than simply setting, displaying or monitoring
values. Some primary goals of XAL [2] are to provide a
hierarchal framework, much like the physical view of the
machine: i.e. an accelerator composed of sequences; and
sequences composed of components such as magnets,
diagnostics and RF cavities. Another objective is to write
general purpose software that can be applied to various
parts of the machine. To accomplish these goals, we have
written a Java based system, and constructed an Oracle
database from which to initialize the accelerator objects.
In section 2 the class structure we use is discussed, in
section 3 the database connection is described and in
section 4 some example applications are presented.

2 XAL STRUCTURE AND FEATURES

2.1 Accelerator Model
At the heart of XAL is a set of classes describing an

accelerator hierarchy, shown schematically in figure 1.
The accelerator is composed of a set of sequences, which
in turn are composed of sets of ordered nodes. The node
structure includes classes for common beamline
components such as magnets, RF cavities and diagnostic

types. The magnet class is further sub-classed into the
usual multi-pole types (e.g. dipole, quad) as well as
permanent and electromagnet classes, etc.

Fig.1. Schematic of the XAL accelerator class hierarchy.

Methods are provided throughout the accelerator class

structure to easily perform common tasks such as: 1)
selecting nodes of a certain type from a sequence, 2)
getting or setting magnetic fields in a magnet, or 3)
finding the beam position from a diagnostic Beam
Position Monitor (BPM). Importantly, the details of the
control system connection are hidden from the user. The
Accelerator node objects generally correspond to the
physical devices actually in the accelerator beamline, but
are not necessarily one-to-one mappings. For example, at
SNS there are single hardware devices consisting of a
quadrupole + dipole windings + BPM strip-lines. We treat
these functions as three separate nodes (quad + dipole
corrector + BPM), all at the same position.

2.2 The Control System Connection

XAL uses EPICS as the underlying control system to

communicate with accelerator hardware (see Fig. 2).
EPICS communication uses a single “Process Variable”
(PV) as the fundamental unit for communication with
higher level programs via a protocol called Channel
Access. XAL has a Channel class that encapsulates the
communication with a process variable. There are
typically many Channel objects associated with a
particular accelerator node type, and these are held in a

Accelerator

SCL HEBT MEBT Ring

Dipole RfCavity …

…

BPM
xAvg()
yAvg()

Quad

Nodes:

Sequences:

__

*SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six
national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

ChannelSuite (which is simply a collection of channels
for that device). For example the BPM device class has
ChannelSuite that holds Channel objects for providing the
horizontal beam position, vertical beam position etc.

The Channel class is an abstract class that has interfaces
most control system would provide. For EPICS PV
communication, we extend it to a concrete class that
wraps to Java Channel Access (JCA) [3]. This class
presently has interfaces to native C routines, and is the
only non-Java library we use. We hope in the future to
provide a native Java interface to the EPICS channel
access.

The Channel class also provides convenience capability,
by hiding some of the underlying actions required to make
connections to PVs. It also has member functions to
provide Process Variable parameters other than the value
(e.g. times stamp, units, display limits, etc.). Also
capabilities to switch between synchronous and
asynchronous communication and PV monitoring are
provided. Another useful feature of the Channel class is
the ability to apply a specified “transform” to a Channel
value. For example, one may apply a scaling
transformation on a power supply current, in order to get a
magnetic field level. In this sense, it is possible to assign
EPICS PVs to more than one XAL Channel, with some
Channels representing the raw PV value, and others with
value added transformations.

Typically applications dealing with the accelerator
classes never actually use Channel objects directly, but
rather use methods that directly provide the information
of interest. For example, with a magnet the user may use a
getField() or setField() method to get or set the magnetic
field. For a BPM, the user can use a getXAvg() to get the
average horizontal beam position. The actual Channel and
control system connection details are hidden. The
programmer can however provide local exception

handling, in-case the underlying calls to the control
system fail to connect.

2.3 Tools
Several general purpose tools are provided that are used

in applications and classes. Some of the more extensively
used tools are described here.

SNS is a pulsed device, and will operate at 60 Hz

eventually. EPICS will provide a timestamp to each PV,
from a common timing system. It is important to be able
to gather many signals from a common pulse, when
analyzing beam behavior. To this end a correlator package
is provided. A list of requested PVs, time window for
correlation and fraction of PVs gathered to consider
success are input. The correlator can be used to provide a
steady stream of correlated PVs from a common pulse to
a listener, or to provide results at a prescribed rate.
Another correlator feature is the use of customizable
filters, which can be used to selectively gather data sets.
For example, a minimum threshold on one PV can be
used as a trigger mechanism for acquiring other data.

A DataTable set of classes provides a simple database

like capability. These classes are more powerful than the
Java collection classes, and are much easier to use than
constructing an external data base. An example of their
use is in the Save/Restore/Compare application, to
provide a query-able structure that contains a custom
hierarchy of system and device types.

We also use widgets from the Cosylab ABeans project

[4] to augment XAL tools. These include value selection
and display tools such as a convenient thumbwheel
selection tool. We use the Cosylab synoptic beamline
device display on charts to easily identify the portion of
the accelerator being analyzed.

Application level

Accelerator
hardware interface

Real Time Data Link (RTDL)

XAL “device”
programing layer

TCP IP
network

EPICS Channel
Access

Global
Database

XML
File

Fig. 2 Overall relationship of the XAL application framework, and the SNS Control system.

The XmlDataAdaptor class provides a way to read and
write data in XML format, from a generalized structure
and is used extensively. For example it is used to parse the
overall accelerator structure from an xml initialization file
(see Section III). Also, specific applications have open
and save capabilities. The application data initializations
(open) and saving are typically done with this class (most
of the file data storage in XAL is done in XML format).

2.4 Online Model
An important XAL feature is an online accelerator

model [4], which allows for on-the fly calculation of
beam parameters, based on machine settings. The main
components are a lattice (constructed from the XAL
accelerator nodes) and a probe (describing the beam, and
how it is to be modeled). The relationship between the
lattice and the XAL sequence structure is shown
schematically in Fig. 3. The lattice is generated via a set
of rules, from the accelerator node device information. In
the transformation to the lattice view, devices may be split
into more than one piece, and drift spaces are added (note
- no drift information is stored in the XAL initialiazation
database, only actual device information). Also a visitor
pattern scheme is used to facilitate synchronization of the
lattice view parameters, with updates from different
sources.

Fig. 3 Relationship between the XAL device view and the

online model lattice view of the machine

2.5 Scripting Interfaces
In addition to creating pure Java applications to

exercise XAL capabilities, scripting interfaces are
available. These include Jython[6] and Matlab™
interfaces. In both these cases, no glue code, special
wrapper code or build steps are needed; rather the Java
classes can be directly imported into the scripting level
and used seamlessly along with the scripting language.
Although we have written complete applications in
Jython, the dominant use of these scripting interfaces is
for quick testing and providing easily digested examples.
The scripting interface makes it possible to exercise code
features with only a few lines of code, facilitating testing
and easily showing others how to use features via
examples.

3 THE DATABASE CONNECTION
XAL provides a hierarchal framework, but the actual

objects within this structure need to be initialized. We
initialize the accelerator structure using information from
“beamline component” tables in the global SNS relational
database [7]. The global database is an extensive database
containing information about both abstract devices, and
specific hardware equipment. For XAL, the abstract
device information is of interest. In particular, there are
tables defining the sequences within SNS, and the devices
within each sequence. A beamline device could be a
magnet, diagnostic instrument or RF cavity. A SQL query
produces either the XAL structure directly, or an
intermediate XML representation.

We primarily use the intermediate XML file for XAL

initialization for several reasons. First, it is faster to do the
query once, and have individual applications read the
intermediate XML file, rather than having each
application perform the query on startup. Also, using the
XML file, allows the possibility of easily overwriting
database values. During commissioning activities this has
proved quite useful. For example, if a BPM’s electronics
are swapped with another, the switch of the PVs
associated with the swapped electronics can be
accommodated in the XML file. This change in a single
XML initialization file, is sufficient to update all the XAL
applications, since XAL uses a uniform initialization
method. We also add Channel transformations (section
2,2) in the XML initialization file to quickly make
temporary correction quick across the board .

An important link between the independent PV oriented
EPICS system and the accelerator hierarchy oriented XAL
structure takes place in this initialization step. I.e., the
mapping from many individual EPICS PVs to a single
beamline device channel-suite (see section 2.1) is done in
this step. After this point, the EPICS PVs are assigned to a
strict class structure. Presently, we use a naming
convention to facilitate this mapping.

4 APPLICATIONS
XAL tools have been used to create about 10

applications. These applications use Java Swing GUI
components. An important feature of the applications is
the use of a common framework. The framework is
discussed first, and some specific application examples
are presented next.

4.1 The Application Framework

An application Framework has been created, to be used
as a common starting point for all applications. The
framework is a set of classes that actual applications
extend. This approach has several advantages. First all
applications have a common look and feel, which is
important for operators and users to more easily get
acquainted with new applications. Also, common
application features are provided one time up front, and
shared by all – this also helps jump start application

Lattice View
(used in modeling)

Device View
(Stored in XAL)

- Single entry per element

- Only physical devices

- Elements may be split

-Includes drifts

development. Finally, it allows easy extension of all
applications in a common place. The application
framework template is shown in Fig. 4. A standard
“windows application” menu bar, tool bar and empty
panel is provided as a starting point, that the user can
easily augment or cull. The application framework uses a
document-view architecture, i.e. a single application can
have multiple documents associated with it, each with its
own window view. This is useful for general approach
applications. The user can selectively pick the portion of
accelerator and setup details and store the setup as a
document. The standard menubar shown in Fig. 4 has
typical functionality that a user familiar with windows
applications would expect. The Accelerator menu items
shown in Fig. 4 comes with an Accelerator extension of

the framework which provides a browsing capability of
the accelerator hierarchy. Users can customize the menu
items and their action handling as desired.

Fig. 4 The accelerator application framework template.

Fig. 5 The XIO application, progression from accelerator sequence selection t device type selection to signal type
selection to data monitoring (tabular + plots).

4.2 XIO

XIO is a general purpose application to monitor sets of

signals. The user first uses the accelerator sequence
selection feature (part of the framework) to select the
portion of the accelerator to work with. Then device types
of interest within the selected accelerator sequence are
picked (e.g. BPMs ...). Finally the signal types for the
selected device types are picked (e.g. horizontal beam
position signal type for the BPMs). A separate table is
created for each selected device type within in a tabbed
panel and within each table there is a column for each
selected signal type. The table cells display the values at a
prescribed update rate (typically 1-2 Hz). Options exist to
display each column of signals as a live X-Y plot, where
the horizontal axis is the distance along the selected
accelerator sequence. Also possible is a color “waterfall”
display of a signal type’s value (rendered via a color
mapping) along the beamline (x axis) and versus time (y
axis).

4.3 Scope

As SNS is a pulsed device, understanding time
dependencies of quantities during a pulse is important.
Also, there are minimal provisions for analog display of
waveforms in the control room, rather waveforms are

digitized and made available as EPICS PVs. A “digital
scope” application is available for viewing the
waveforms. An important requirement is to be able to
overlay different waveforms from different sources (e.g.
RF, BPMs, loss monitors, …). Since each waveform
source uses different digitization methods, we require
additional information for each waveform PV, describing
the time offset of the first element from a common time
point, and the time bin size that each array element
corresponds to. With this information, waveforms from
various sources can be displayed together, with real time
as the x coordinate. The time correlator engine described
in 2.3 is used to ensure that simultaneously displayed
waveforms are from the same machine pulse.

Fig. 6 The scope application display.

Select sequence Display table Plots:

Common menu bar Toolbar for common actions

The scope trigger mechanism permits waveform
acquisition based on the filtered behavior of another PV.
Also, a programmable math function is available to
display functions of various waveforms. Preliminary
testing shows good performance up to 10 Hz (test limits).

4.4 Scan application

A commonly used application is a general purpose 1-D
scan. This allows the user to prescribe a scan of one
quantity and monitor the behavior of other quantities.
Capabilities include averaging over multiple pulses,
delays between steps, analysis and exporting of results.
This general purpose tool provides an easy, flexible way
to perform quick unanticipated experiments in an
automated fashion.

Fig. 7 The one-dimensional scan application display.

4.5 Online Model
The online model application provides mechanisms for

user selection of the accelerator sequence, probe (i.e.
model) type, and model data source. The data source can
be the machine, the design values, or user supplied (useful
for quick what-if analysis). Views of both the selected
XAL device structure and the lattice structure (see Sect.
2.4) details are available, as well as the calculated beam
trajectory and Twiss parameters. A screen shot of this
application is shown in Fig. 8. The Twiss plot tab is
visible in this image, but clicking on the other tabs
presents views of different aspects of the modeling, from
input to output.

3.1 Save-Compare-Restore (SCORE)

The Score application is an operator tool to aid in
“snap-shotting” the state of the machine, comparing the
machine state to a previous state, and restoring conditions
to a previous state. This set of requirements is broader
than for just beamline device parameters. This application
is not limited to only settable quantities and also saves
readback quantities. It uses a hierarchy of system / device
types / and related settable and readback quantities. We
use the DataTable classes described in section 2.3 to
facilitate querying using this hierarchy. The screen image
shown in Fig, 9 shows the live values displayed by the
side of the saved values. Each system is displayed in a
separate tab. It is possible to selectively pick

combinations of systems and device types for restoring
values.

Fig. 8 Image of the online model application

Fig. 9 Image of the SCORE (Save-Compare-Restore)

application.

5. SUMMARY
The basic Java XAL structure is produced, and includes

facilities for application programming. A set of initial
applications is produced, and used at the initial SNS
commissioning. The next development stages include
populating the database and developing more applications
specific to other beamlines that will be commissioned in
the next several years. Also, in the framework area we are
developing an agent based client/server capability.

6 REFERENCES
[1] http://www.aps.anl.gov/epics
[2] http://www.sns.gov/APGroup/appProg/xal/xal.htm
[3]http://www.aps.anl.gov/xfd/SoftDist/swBCDA/jca2/ind

ex.html
[4] http://cosylab.com/
[5] C.K. Allen, et. al.,” A Novel Online Simulator for

High-Level Control Applications Requiring A Model
Reference” , these proceedings.

[6] http://www.jython.org/
[7] D. Purcell, et. all., Initial Experience with SNS

Database Applications, these proceedings.

