
Recent Developments in Electron Cloud E�ects

M. Blaskiewicz

Spent June 3 through 7 at LBNL working wit M. Furman.

The bulk of the time was spent optimizing Miguel's POSINST code.

We inserted timing calls and found that the majority of the time was spent

calculating the energy of electrons coming o� the wall.

The original algorithm for choosing the secondary energy went as follows

1) For a given incident energy E0, calculate the secondary energy

spectrum P (E)

2) Find the maximum value of P (E), call it Pmax

3) Create a random deviate uniformly distributed on [0; E0], call it E1

4) Evaluate P (E1)=Pmax

5) Create a random deviate uniformly distributed on [0; 1], call it x1
6) If x1 � P (E1)=Pmax the secondary energy is E1 , otherwise go to 3)

For our PSR test case more than 99% of the time was spent in this compu-

tation.

The improvement followed from noticing that the secondary energy distri-

bution was of the form

P (E) =
NX

n=1

anPn(E) (1)

where an > 0 and
NX

n=1

an = 1

Also, eÆcient random number generators exist for each of the distributions

Pn(E).

In our case N = 3: P1(E) was a Gaussian, P2(E) was a truncated power

law and P3(E) was an incomplete gamma function.

1



The breakthrough came by noticing that the distribution given by equation

(1) can be evaluated nearly as quickly as evaluating only one of the eÆcient

generators

De�ne the N partial sums

Aj =
jX

n=1

an

Using these de�ne the functions Ij(x) = H(Aj � x)�H(Aj�1 � x)

where H(x) = 1 for x > 0 and H(x) = 0 for x � 0.

Let the random variables Xn be chosen according to Pn(E)

Let X0 be a uniform deviate on [0; 1]

Then, a random deviate distributed according to equation (1) is given by

X =
NX

j=1

Ij(X0)Xj (2)

A simple way to prove equation (2) is to verify that < exp(��X) > is the

Laplace transform of equation (1).

Here's some Fortran

x0 = ran0()

asum=0

do k=1,N

asum = asum + a(k)

if(x0 .le. asum )then

x = rank()

go to 25

endif

enddo

25 return

This improved the speed of our test case by a factor of 200.

It seems too simple to be new, any references would be appreciated.

2



The other main achievement was �xing a bug in my code NCSEC

This involved an error in calculating the secondary emission 
ux

Let the total secondary emission yield for a given input energy be

SEY =
Qout

Qin

(3)

where Qin is the total charge hitting the surface and Qout is the total charge

leaving the surface

Let Pr be the probability of re
ection.

Originally my code went as follows

x0 = ran0()

if(x0 .le. Pr )then

Qout = Qin

else

Qout = (SEY � Pr)Qin

endif

When averaged over x0 this gives

< Qout=Qin >= (SEY � Pr)(1� Pr) + Pr;

which is incorrect. The correct average is given by

x0 = ran0()

if(x0 .le. Pr )then

Qout = Qin

else

Qout = (SEY � Pr)Qin=(1� Pr)

endif

This has a signi�cant impact on electron cloud estimates.

Consider 2�1014 protons with losses that create 2�108 electrons per meter

per turn.

3



0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 100 200 300 400 500 600 700 800 900 100

 s
ec

on
da

ry
 y

ie
ld

, n
or

m
al

 in
ci

de
nc

e

 incident energy (eV)

sey1(x)
sey2(x)
sey3(x)

0.1

1

10

100

1000

0 0.5 1 1.5 2 2.5 3 3.5 4

 li
ne

 d
en

si
ty

 (
nC

/m
)

time (us)

sey1
sey2
sey3

sey1_old
prot

4



0

50

100

150

200

250

300

350

0 0.5 1 1.5 2 2.5 3 3.5 4

 li
ne

 d
en

si
ty

 (
nC

/m
)

time (us)

sey1
sey2
sey3

sey1_old
prot

0

20

40

60

80

100

120

140

160

0 0.5 1 1.5 2 2.5 3 3.5 4

 li
ne

 d
en

si
ty

 in
 b

ea
m

 (
nC

/m
)

time (us)

sey1
sey2
sey3

sey1_old
prot

There are still di�erences between POSINST and NCSEC.

Hopefully, they are minor

Comparison between the codes and estimates for SNS continue

5


