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1. General Code Information

ORBIT (Objective Ring Beam Injection and Tracking) is a particle tracking code for Rings. This
document is intended to be an introduction on how to use the ORBIT code. Thisincludesa 1)
description of the general code architecture, 2) a description of how to implementation specific
features and 3) some examples of how to use features. Asthisis a user manual, documentation of
the underlying physicsis not provided here. Rather a description of how to use the code to
simulate various problems is given.

1.1 Obtaining and Installation

ORBIT isavailable at http://www.ornl.gov/~jda/APGroup/Codes/Codes.html . Links to the
packages it uses are aso on this page.

ORBIT isaC++ code and requires a C++ compiler to build. It is distributed as source. It has
been built successfully with various versions of the GNU g++ compiler, as well as proprietary
compilers. It also uses severa additional freely available packages, as discussed below. Note: it is
important to build the SuperCode driver shell (see below) with the same compiler as used to build
ORBIT, to avoid name mangling problems when linking.

1.1.1 Starters

ORBIT uses anumber of freely available packages. The SuperCode driver shell (see below) is
required. A number of additional packages are optional, and provide additional capabilities. These
packages should be built first. They are included in ORBIT during the build by previously defining
the following environment variables, that should be defined in alogon script (e.g. .profile or .login
file) :

CPU - Required. Set to the type hardware you are running on (you can just make up a name).
Thisis useful when running on a system that file shares across different hardware
architectures. In this case, be sure that CPU is appropriately defined to be distinct for each
different hardware type at logon.

SUPERCODE_ROOT — Required. Set to the installation directory of the SuperCode shell (see
below)

FFTW_ROOT — Required to use the FFT space charge implementations. Set to the installation
directory of the FFTW library. See http://theory.lcs.mit.edu/~fftw/ for the distribution and
documentation of this package.

PLPLOT - Required if you want to use interactive plotting. See
http://www.mech.ubc.ca/Students/ Computer/Software/Pl plotdoc/nodel.html for the
distribution and documentation of this package.




If you think you want these optional features, build the packages first and define the associated
environment varariable appropriately (be sure to export it if you use the ksh). Also, ORBIT uses
the GNU utility gmake to build the code. Thisis often the default make utility on many systems
(i.e. LINUX). Be sureit isinstalled on your system, and all references to ‘ make'in this manua,
actually refer to the GNU make utility.

1.1.2 Build the Libraries
1.1.2.1 Build PLPLOT Library

Thislibrary is required for the interactive plotting capability. If it is not installed on your machine,
ORBIT and SuperCode should build fine, but the plotting capability will not be available. After
obtaining the PLPLOT lib from the above address, followthe instructions in the README and
INSTALL file. Be sureto build it with double precision (i.e. with the —with-double flag) and
without shared libraries (i.e. —without-shared flag). Then install it (preferably with root privilege
inanormal place like /usr/local/plplot directory). Try building and running some of the ditributed
examples to seeif it'sworking (esp. the postscript and X-window drivers).

1.1.2.2 Build the FFTW Library

This package is used and needed for the FFT space charge routinesin ORBIT. If you think you
may want to use the space charge capabilities, build this package first. Get it from the above
WWW address and follow the instructions to build it. It does not have an ‘install’ capability to
copy the built libraries etc. to a common area, so you must either define FFTW_ROQOT to the
directory where you built this package, or else manually copy the library and header filesto an
appropriate common directory (e.g. /usr/local/fftw/...).

1.1.2.3 Build the SUPERCODE Driver Shell

If the SuperCode driver shell is aready built on your system, just define your
SUPERCODE_ROQT environment variable to be the installation directory, and skip the rest of
this section.

The SuperCode driver shell must be built on the platform you want to run on. Start by defining
CPU, and PLPLOT as described above. This shell has been built on Alpha, IBM, HP, SUN
workstations, as well as LINUX running on PCs and Alphas'. Additionally, for this package you
may want to define the optional environment variables, before building it:

READLINE_ROOT —directory for the libreadline.a and libtermcap.a libraries. These are standard
on many systems, and are also available from GNU. Building with READLINE_ROOT defined
permits interactive command line history and editing capability when running ORBIT.

! The Makefile provided is for UNIX systems, but the shell has been built on Windows (with MSVC4.0) and
Macintosh



GALIB —Theinstalation directory for the GALib genetic agorithm optimization class library, see
http://lancet.mit.edu/galib-2.4/ for the source . This allows use of the genetic algorithm optimizer
in the Solver module. It is unlikely you'll need it for ORBIT however.

With these environment variables defined, get the SuperCode distribution (i.e. the sc.tar tar file)
and untar it by typing

tar —xvf sc.tar

and then change directories to the newly created SuperCode directory. Then type

make configure

Then be sure there is afile Config/$(CPU).mak, where CPU is whatever you decided to call your
CPU environement variable. There are anumber of example “.mak” files you can use. Edit thisfile
appropriately to define the compilers on your machine, and flags you wish to use for building.
Also check to ensure there is afile called SCL/$(CPU).config . Thisfile contains al device
dependent source code. Again find an example that looks close to the configuration you are using
and try using it. Both of these files are used later in the ORBIT build.

Then in the SuperCode directory, type “nmake”. After SuperCode is built, be sure
SUPERCODE_ROQT is defined to be the directory where you want the shell installed, and type
“make install”.Youmust have root privilegeif you want to install it in anormal place like
/usr/local/SC .

Documentation for this driver shell is provided in the SuperCode/Docs/SCManual.psfile.
Warning: the section about support for FORTRAN modulesis obsol ete.

1.1.3 Building ORBIT

Next untar the ORBIT distribution (ORBIT .tar) file by typing

tar —xvf ORBIT.tar

and move to the newly created ORBIT dirtectory. Then type ‘make confi gure’ and next
‘make’ to build. The ORBIT executable will be put in $(CPU)/ORBIT, where $(CPU) isthe
predefined environment variable. Be sure your PATH environment variable includes this
directory.

1.2 Running ORBIT

1.2.1 Starting ORBIT

Make sure that the executable you created in the step above, isin your PATH environment
variable, relative to wherever to want to work with it. Then just type “ORBIT” to start it up. You



can not only run the accelerator routines from here, but you can also do the general
programmable script stuff described in the SUPERCODE documentation.

1.2.2 Input files

ORBIT will automatically read in the file ORBIT.sc on startup, if it existsin the directory you are
running in. An example ORBIT.sc file is distributed with the code, which includes some genera
settings and routines. Be sure to comment out the plotting stuff if you did not build your Shell
with the interactive plotting. Thisis not meant to be a problem specific input file.

Usudly, arun will be configured by appropriate settings in an input script file. You can have this
input file read at startup by including its name as the first argument to the executable ORBIT,

e.g.: typing
ORBIT casel.sc

will start ORBIT, ORBIT will then read the ORBIT.sc file if it exists, and will then ook for the
specified filecasel. sc toread. Input files can be read from the interactive prompt by typing:

i nclude “casel.sc” // read the file casel. sc

(the‘/l" and following text is treated as a comment, see Ref. [1]). Note that one input file can
include others. For example, the file casel.sc could include aline like:

i ncl ude “standardLatticeSetup.sc” // do a common lattice configuration

1.2.3 Output

Many of the examplesin this manual refer to sending output to a stream. A stream is similar to an
output “unit” in FORTRAN. Streams can be created on the fly by the user. For examplein an
input file a user-defined stream called “f i 0o” to afile called “f i | eout ” can be created on the fly

by
OFstreamfio(“fileout”, ios::out);
This stream will delete any previously defined file called “f i | eout ”. The command

OFstreamfio(“fileout”, ios::app);

issimilar, but will append the prescribed output to whatever exists (if anything) in afile called
“fileout”. Many output routines require a stream type argument. Output can be sent to the
console with the predefined cout or cerr streams, e.g.:

cout << “Echo this nmessage\n”;



See the SuperCode manual [1] for more information on inputting/outputting information from the
Shell.

1.2.4 Quiting
Just type “quit” and hit return. This can aso be included in script files as well.

Y ou can suspend whatever is happening by hitting ‘ control-c’. On some systems, doing this
multiple times also kills the run, so be careful.

1.3 The SupERCODE Driver Shell

The ORBIT code is written in C++, and operates using the SUPERCODE [1] driver shell. Before
discussing any specifics of the ORBIT code itself, afew words are useful to explain the
relationship between user provided “ physics’” modules and the driver shell. Conventiona scientific
programs typically have a prescribed flow of logic originating in a main program. Often there are
severa program flow choices, governed by appropriate choice of input variable settings. The
program execution remains in compiled code until program completion. If the user desires some
new flow logic, an edit-compile (debug) programming cycle is required.

On the other-hand, the SUPERCODE is a programmeable driver shell, which can execute interpreted
script files as well as compiled “physics” modules. Generally runs are done by reading in a* script”
input file. These script input files are more genera than typical “namelist” files which smply

assign values to variables. Since SUPERCODE is a programmable interface, calling sequences to
compiled code can be customized within a script “input” file (without recompiling). In fact thereis
no fully compiled set of logic to do arun. Rather the “genera purpose” workhorse physics
modules are compiled as a “tool-set”, and the calling sequences, looping, initial variable settings
etc. are done through the shell. Additionally, routines can be created on-the-fly in script files and
included in the customized run sequence. This driver shell is described in detail in Reference [1].

Both interpreted and compiled code have their place. Compiled code is much faster in generd.
Compiling everything however leads to code clutter (i.e. one-off numerical experiments, or scans
that are never used again, along with variables to control them). The general philosophy for the
separation of interpreted and compiled code is. code that is execution intensive, and/or general
purpose is compiled. Examples of compiled code would be particle transport through a matrix
multiplication operation. Code that is problem specific and generally not called often during arun
isinterpreted. Interpreted code examples are variable initialization, setting up “ one-off”
parametric scans, €tc.

1.3.1 SUPERCODE Driver Shell Modules

SUPERCODE comes with a number of general purpose modules (see[1]). These include: (1)
optimization (cal culus based and genetic-algorithm?), (2) Probabilistic risk analysis (or uncertainty

2 Requiresinstallation of the GALib library on your system. See http://lancet.mit.edu/galib-2.4/



analysis), (3) Mathematical tools ( splines, B-splines, random numbers, Bessal functions, ...), (4)
interactive plotting®, and (5) parallel processing’. ( Note - the shell plotting capability provides
rudimentary, X-Y and 3-D capabilities, and is intended to provide a quick diagnostic capability,
not an exhaustive plotting capability). Note also that a number of these features require special
libraries to be installed on your system as discussed in section 1.2. All of these libraries are free,
and generally run on most UNIX platforms. These general purpose modules are described in Ref.
1. The Shell is also buildable on Mac and PC OS's. for those so inclined.

1.3.2 Module/ Shell Relationship

The procedure for actually constructing “physics modules’ to be run with the SUPERCODE shdll is
described in Ref.1°. When adding a new module in practice, it’s usually sufficient to mimic the
method of an existing physics module. The genera relationship between the user supplied physics
modules and the driver shell is shown schematically in Fig. 1.1.

The Module Descriptor Fileis auseful place to get information about a module. It lists all the
variables and routines that the Driver shell knows about in that particular Module. Thisisthe
place where these quantities should be documented. Variable quantities in these files can be
manipulated from the Shell. The routines in the Module descriptor files can aso be called from the
Shell. In fact, putting together a set of variable initializations, and routine callsin a script file is
how a*“run” istypicaly done.

Note that the driver shell can not directly access class members. To access class members from
the Shell (manipulate, view, etc.), aModule routine must be written (and compiled) to perform
the appropriate manipulation. Examples where this may be done would be aroutine to create a
macro-particle, or aroutine to dump macro-particle information to a stream. These compiled
routines could then be called from the Shell, and the actual class member manipulations would be
performed in the compiled routine.

3 Requiresinstallation of the PLPLOT and TCL/TK libraries. See
http://www.mech.ubc.ca/Students/Computer/ Software/ Pl pl otdoc/noded.html

* Requires installation of the PVM software library on your system (see http://www.netlib.org/pvma3/book/pvm-
book.html )

® FORTRAN modules are no longer supported.



SuperCode Shell
Interface between user and compiled
code
Programmable on the fly, reads script
files (*.sc files).
Includes toolbox of methods to apply to
complied code

A
Classes
Not directly accessible by the Shell
Used by the Module Sources
A 4
C++ Module Sources Module Descriptor Files
(*.ccfiles) (*.mod files)
Compiled user modules | |- Contains module variables +
routines that the shell knows
about

Is preprocessed during code
build, to generate database for
Shell, and header files for C++
code.

Figure 1.1 General relationship between the physics modules and the SuperCode driver Shell.



1.4 Units

Unless stated otherwise, MK S units are employed. There are a number of notable exceptions
however. Macro-particle coordinates are in mm for distance and mrad for angles. Also the particle
energy isin GeV, and RF and space charge voltages are in kV. Generally the units of variables are
documented throughout the code. Every module member has a description with should include its
unit (if any). The description can be found by looking in the module descriptor file (*.mod), or for
example by typing in the shell:

ORBI T[1]: about(“IRing”); [// find out what IRing is.

The result:

/1 Total ring length [mM
static Real Ring::|Ring;

2. Class Hierarchy for the Ring and M acr o-particles

In thinking about the tracking of macro-particles around aring, two main ideas come to mind: the
macro-particles themselves and the Ring elements which operate on them in various ways. These
are each represented as distinct classes, and much of the code is based on these. As such they are
described in some detail here. We stress that the class structure adopted here has separated the
macro-particle information container (MacrPart class) and actions done on macro-particles (Node
base class) into two separate class structures. The connection between these classesis that the
Node classes require areference to a MacroPart herd. This separation facilitates the easy tracking
of multiple herds through a single ring, which, for example, isuseful for tracking prescribed test
particles in the presence of amain herd.

We reiterate that the actual user implementation of these classesis done via“modules’. These
modules contain the user interaction mechanisms for instantiating objects, performing member
function calls, etc. The modules and actual use of the classes are described later in Section 3.

2.1 MacroPart and SynchPart Class

Thereis aseparate SyncPart classto hold the synchronous particle information. A synchronous
particle must be instantiated before any macro-particles can be created. This synchronous particle®
classisdescribed in Table A.1.

The MacroPart classisdescribed in Table A.2. It isasimple container class to hold information
specific to macro-particles. A Macr oPart object actually contains information about a “herd” (or

® Presently, only one synchronous particle is allowed, but it is straightforward to extend this to multiple
synchronous particles, if ever needed.



array) of an arbitrary number of individua macro-particles’. When a macro-particle object is
instantiated, the “herd” size must be specified. If theinitially specified herd size is exceeded in the
course of acalculation, the storage is automatically resized, but the subsequent execution may not
proceed as efficiently. Most of the information held for particlesis self-evident. Of particular
interest is that each macro-particle object contains a reference to a“synchronous particle’ object.

2.2 Node Class

As the macro-particles circulate around the ring, different operations will be performed on/with
them. For instance they may undergo atransfer matrix operation, or a space-charge kick, or an
information dump to a stream (or file). Each of these actionsis performed at a“node” of the Ring.
The Node class represents the common set of features such operators have. Thisis an abstract
class, with the general-purpose information, common to all nodesin thering. Asthisis an abstract
class, no Node objects will be created, but rather this class will be inherited by sub-classes that will
have actua objects (for example a Transfer-Matrix class). The Node classis described in Table
A.3. Most of the Node members are self-evident, but afew require additional discussion.

The _oi ndex member is used for ordering the nodes into the calling sequence around the ring for
which the operations will be done on macro-particles. The caling sequence is done in ascending
order of the _oi ndex value of each node. Whenever anode isinstantiated, an _oi ndex vaueis
required. Before any actual ring calculations are done, the nodes are automatically sorted into the
order inwhich the calculations should be done (in the Ri ng: : i ni t Nodes routine) The order isin
ascending value of _oi ndex. The _I engt h member is the length of the node (which can be 0).
Each node presumable should do some operation with the macro-particles. Two Node member
function hooks are provided for this: (1) a_nodecCal cul at or , and (2) an _updat ePar t At Node
routine. Both these routines are automatically called for each node included in thering in the
order of their _oi ndex values. Thefirst routine, nodeCal cul at or (macroPart &h), isaplace
where preliminary calculations can be done on herd "h”, which may depend on more than one
macro-particle. For example, calculating the potential resulting from the ensemble of macro-
particles could be calculated here for a space-charge kick node. The second routine

updat ePar t At Node( macr oPart &h) isprovided to operate on individual macro-particles from
herd “h”. For example, a“Transfer matrix” node could advance each individual macro-particle
through atransfer matrix here. Note that either of these routines can be omitted if not needed.

2.2.1 Derived Node Sub-Classes

As mentioned above, the Node classis an abstract class. It isinherited by the actual Node sub-
classes. These derived classes perform the actual calculations needed to transport the macro-
particles around the ring, and perform other manipulations on them. The mechanism for
implementing these classes is generally to create a module for each class. While the class contains
the routines that do the calculations, the “module’ members contain the interface mechanisms
between the class objects and the driver Shell. Examples of Node sub-classes are: 1) a

" This approach is taken to allow contiguous memory alocation for alarge number of macro particles. This
appears to help execution performance for cache limited CPUs.



Transf er Mat ri x class for transporting macro-particles around the Ring, (2) aLSpaceChar ge
classto give longitudinal space charge kicks, and (3) Accel er ati on classto give RF voltage
kicks.

When aNode sub-classis added, a constructor should be supplied that at a minimum accepts
input for the Node name and the _oi ndex value specifying where in the ring the Node cal culator
iscalled. Also, at least one calculator should be supplied (either a nodeCal cul at or or

updat ePar t At Node), or else the Node would not do anything! With these class members
defined and declared, we know both “where” each node should is called as we work our way
around the ring and “what” it does.

2.3 Diagnostic Classes

A number of diagnostic classes are provided for use in analyzing beams. The actua
implementation and practical application of these is described in the Diagnostic part of Section 3.
Here we only describe the genera features of these classes, as they are distinct from the Node and
Macr oPar t classes described above. Thereis abase diagnostic class (Di agnost i cBase ) which is
described in Table A.4. The constructor for the derived diagnostic sub-classesis required to have
areferenceto aMacroPart input to it. Thisisthe identifier for the herd to do the diagnostics on.
Each derived Diagnostic class defines its own calculation (_di agCal cuat or () ) and can
optionally provide aroutine to dump “human” readable diagnostic results to a stream (

_showDi agnost i c(Ostream &sout) ) or dump datato a stream for post-processing (

_dunpDi agnost i c(Ost ream &sout) ). Examples of derived diagnostic classes are beam
moments, beam canonical coordinates, and beam emittances. Some of these classes are used in
nodes in the code, for example in calculating the emittance for printing beam statistics at regular
intervals.

3. General Modules

Note: This section is not an exhaustive user manual. See the appropriate Module descriptor file to
get detailed descriptions of the meanings, variable units, and routine implementations etc. Also
look in the module source for a definition of the input / output to routines.

3.1 The Particle Module
3.1.1 SynchParts, MacroParts and herds

This module contains the interfaces between the user/shell and the Macr oPar t class. Member
functionsin this module offer a window into the Macr oPar t class. Before actually creating any
particluar macro-particles, the user must first create a synchronous particle (see the

Particl e::addSyncPart routine) and also create a macro-particle “herd” (see the

Particl e:: addMacr oHer d routine). Presently only one SyncPar t object can be created. For
example, the following script creates a herd to store macro-particles:
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FEEEEEEErrrr bbb rrrrrn
/1 Make a synchronous particle:
FEEEEEEErrrr bbb rrrrrn

Real TSync = 1.; /1 Kinetic Energy (GeV)
Real nBync = 1; /1 Mass (AMJ)
Real charge = 1; /1 charge numnber

addSyncPart ( nSync, char ge, TSync) ;
mai nHerd = addMacr oHer d( 12000) ;

This example createsa 1 GeV proton synchronous particle. Then it creates a herd (identified by
the predefined Integer mai nHer d) with storage vectorsinitially sized at 12,000. Note that none of
the actual macroparticles have been initialized yet, only storage space has been alocated. The

mai nHer d isaspecia herd, which is the default herd for many operations. But it also possible to
create an additional separate herd, for example with

I nteger testHerd = addMacroHer d(100);

Test particles could be introduced into t est Her d a some point, and tracked independently from
the mai nHer d. One of the Macr oPart herd membersisthe switch _f eel sHer ds. Herds are
created with a default value of O, which means it only interacts with itself via space charge. If this
valueis switched to 1 by using:

set Her dFeel Level (testHerd, 1) ;

it will feel, but not push the herd mai nHer d. Thisis useful for tracking a set of test particlesin the
presence of the herd mai nHer d.

3.1.2 Adding macro-particles

Now that we have a herd set up, we need to be able to actually put some particlesin it. The
addMacr oParti cl e (or addMacr oParti cl e2) routines allow direct addition of a single macro-
particle with specified values. For example, one could do:

Real x, xp,y,yp, dE, phi;

x =1.;xp =0., y=0., yp=1.; // mm nrad
addMacroPart (x, xp, VY, Yyp);

X =2.;xp =-1., y=1., yp=-1.; // mm nrad
addMacroPart (x, xp, VY, Yyp);

to add 2 particles to the mainHerd, with O for the longitudinal DE and f coordinates. One may
also specify a specific herd to add particles to with:

addMacr oPart Base(mai nHerd, x, xp, y, yp); ,Or
addMacr oPart Base(testHerd, x, xp, Y, yp);

To aso specify the macro-particle longitudinal coordinates, use

:// mm nmrad

x =1.;xp = 0., y=0., yp=1.
/1 GeV, degrees

dE = 0.001; phi=90.;
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addMacroPart2(x, xp, Yy, yp, dE, phi);
addMacr oPart Base2(testHerd, x, xp, y, yp, dE, phi);

These routines are the core means of adding particles to a herd, and can be called directly from
the shell as shown above. However it is too cumbersome to actually directly use these routines to
create a herd of say 100,000 particles. In practice, they are more often called automatically from
routines that sample from a prescribed distribution type (see the Injection Module below), or by
using afeature to read from afile. For example, using:

readParts(mai nHerd, “filenane”, nParts);

will read nPar t s macro-particles from the file“f i | ename” into the nai nHer d. The format of the
fileis one data set per line, and each line containing the valuesfor x, X', y, y', DEand f (in mm,
mrad, GeV and rads) with entries delimited by whitespace. The actual format of the numbers
themselvesis not important. If the file contains less than the specified number of macro-particles,
only as many as are contained in the file are read.

3.1.3 Getting macroPart information

Since the Shell does not have direct access to class members, routines are provided here to dump
macro-particle information to forms accessible by the Shell. nvacr oPar ti cl es specifiesthe
number of macro-particlesin the mai nHer d instantiated so far. The routinesxval (i), yVval (i),
xpVal (i), ypVal (i), deltaEval (i), andphiVal (i) retunthex,y, X,y , DEandf vaues
for a single macro-particle number number “i” in the mai nHer d. For example,

Real x1 = xpVal (11); // x1 contains the x’ value of the 11'"
/!l macro-particle in the mai nHerd.

A similar set of routines exists to get particle coordinate information for an arbitrary herd. For
example:

Real x2, yp3;
X2 = xVal Base(2, testHerd); // x2 now contains the x val ue
/1 of the 2" particle in herd testHerd
yp3 = ypVal Base(3, testHerd); // yp3 now contains the y' val ue
/1 of the 3" particle in herd testHerd

TheroutinesxVval s(v), yVal s(v), xpVals(v), ypVvals(v), deltaEvals(v) and
phi Val s(v) dump the specified macro-particle information for the nai nHer d into a vector “v”
(which isautomatically sized). For example,

Real Vect or xx;
xVal s(xx); [/ xx now contains all nMacroParticles x values of the mainHerd

It is possible to dump the particle coordinates to afile (in aformat compatible with the

r eadPar t s command discussed above) with the dunpPar t s routine. This routine dumps the
valuesfor x, xX',y,y,DEandf (in mm, mrad, GeV and rad) to a specified stream. Each of the
particles coordinates are on a separate line. For example:
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Ostreamfio(“particle.dnp”, ios::out); // create a streamto a new
/1 file called “particle.dnp”
dunpPart s(mai nHerd, fio); // dunmp the coordi nates of the mainHerd
/1 macro-particles to streamfio

It is also possible to calculate and send the extrema information (maximum /minimum particle
coordinates) of aherd to a specified stream. For example,

OFstream fio(“casel.out”, ios::app); // create a streamto an
/lexisting file called “casel.out”
showExt rema(mai nHerd, fio); // dunp the extrema of the nmainHerd
/1 particles to streamfio
showExt rema( mai nHerd, cout); // dunp the extrema of the mainHerd
/] particles to the screen

Finaly, aformatted listing of al the herd macro-particle parameters can be sent to a stream with
the showacr oHer d routine. For example,

showHerd(cout, testHerd);

will send alisting of the particle parametersint est Her d to the console. Be careful, doing this
with alarge herd could dump alot of screen-fulls.

3.1.4 Lost macro-particles

ThenmacroPart class contains alLost Macr oPart member. The Lost Macr oPar t class contains
information about each macro-particle that islost during tracking (for example at an aperture).
The member function _addLost Macr o does the transfer of information from an active macro-
particle to alost macro-particle.

3.2 TheRing Module

The Ring module is a general module, which controls the overall execution flow for the macro-
particle tracking. Although it has no classesitself, it contains some tracking initialization and
“hooks’ that actually perform the calls to the Node class calculators. Some of the important
routines from this Module are described below.

Thei ni t Ri ng routine performs some generd initialization calls. Importantly, it sorts all Nodes
which have been added to the ring by ascending order of the “ol ndex” value®. Note that in an
input file it is not necessary to create ring nodes in the order you want them to appear in the ring.
Their order is determined by their “ol ndex” value. This routine does not need to be called by the
user, and is automatically called before any tracking is done, if needed.

8 |t sagood idea to include some “padding” when assigning an oindex value to a Node. For example you might
use intervals of 10 or so, to allow “space”’ between elements in which to insert more nodes later.
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3.2.1 Doing turns

ThedoTurn(1nteger &nt) pushesthe herd mai nHer d a specified number of turns around the
ring. It takes an | nt eger argument specifing the number of turns to do. This routine loops over
all active nodes. For each node it first calls the appropriate _nodecCal cul at or routine and then
calsthe _updat ePar t At Node routine. For example, the following command will cause the
mai nHer d to be pushed 100 turns:

doTur n( 100);

A related routineisdoTur nBase( | nt eger &herd, const |nteger &nt). Thisroutine causesa
specified herd to be turned a specified number of turns; for example:

doTur nBase( rmai nHerd, 100);

causes the herd mai nHer d to be tracked for 100 turns (same as the previous example). Another
example:

doTur nBase(testHerd, 2);

causesthe herd t est Her d to be tracked for 2 turns, without modifying the herd mai nHer d. A
number of other routines are available for tracking a herd to an arbitrary ring node. These are the
t ur nToNode and f i ni shTur n routines. The routine t ur nToNode will track a specified herd to a
specified ring node. For example, the call:

t urnToNode( mai nHerd, 23);

will cause the mai nHer d to be tracked up to, and including the action of the 23" node. The first
argument is the integer herd identifier, and the second argument is the integer node number. To
determine the node number you want to track to it may be useful to call the Output module
routine “showRi ng( cout ) ” to list the ring nodes to the console The node number isin the first
column of this output. Once at the desired ring node, other actions can be done, for example
plotting the herd, dumping its contents to afile, performing some diagnostic on it, etc. This action
can be continued to arbitrary nodes of increasing magnitude (farther along the ring). The turn can
be finished by using thef i ni shNode( mai nHer d) ; command.

Occasiondlly it may be necessary to push multiple herds around the ring together. The routine
turnHerds(I nteger & nt) isprovided for this purpose. Thisroutine turns al the defined herds
a prescribed number of turns around the ring. The outer loop is on the nodes, and the inner loop
on the herds.

3.2.2 Calculating the longitudinal separatrix
Thecal cBucket routineisaspecial routine to track “abucket particle’, which can be used to

find the separatrix bucket boundary in longitudinal space. It takes two arguments, (1) an initia
energy (GeV) and, (2) aninitial angle (deg). The calculated energy and angle coordinates for the
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bucket are stored in the vectors bucket DE (GeV) and bucket Phi (deg) respectively. These
vectors are automatically dimensioned as needed.

3.2.3 Longitudinal only tracking

Most of this manua applies to the case for both transverse and longitudinal tracking. But it is
possible to do longitudinal only tracking by specifying “I ongTrackOnly = 1;” . Inthis casethe
lattice input discussed in 4.1 is not needed (and should not be used). Also be sure to include an
Accelerating node (see section 4.3) and optionally a longitudinal space charge node (see section
4.4). Seethe decription in section 4.3 for specifying the ring parameters for the case of
longitudina only tracking.

3.3 Diagnostic Module

This module implements diagnostic class objects in routines that are accessible from the shell. The
classes are declared in file DiagClass.h. Some of these are implemented so that they can be called
directly from the shell, and provide information about some aspect of a herd. Other diagnostics
are implemented as ring Nodes, which can be called regularly as the beam traverses the ring.

3.3.1 Stand-alone diagnostics
3.3.1.1 Emittance

The emittance of a herd can be calculated with the routine cal cEni t Base( | nt eger &herd).
This routine accepts a reference to the herd identifier. It calculates the horizontal and vertical
emittance of each herd member (stored in the vectors xEni t and yEmi t respectively).
Additionally, some statistical quantities are stored:

xEni t RVB = horizontal RM S emittance of the herd (p-mm-mrad)
yEm t RVS = vertictal RMS emittance of the herd (p-mm-mrad)

xEni t Max = maximum horizontal emittance of the herd (p-mm-mrad)
yEm t Max = maximum vertictal emittance of the herd (p-mm-mrad)

The emittance distributions can be binned by defining the number of bins (nEni t Bi ns) and the bin
width (del t aEni t Bi n) in p-mm-mrad, and calling the routine bi nEni t (). Thisroutine stores
the percentage of the beam with horizontal emittance >i * deltaEni tBininxEnitFrac(i).
Similarly the vertical information is stored in xEni t Fr ac and the percetange of beam with
horizontal or vertical emittance>i * del t aEni t Bi n isstored in xyEni t Frac. For example the
emittance information of the main herd could be calculated with:

NEmtBins = 50; deltaEmitBin =2.; // Bin fromO to 100 pi-nm nrad

cal cEm t Base( mai nHer d) ; /1 Calculate the main herd emttance

cerr << “X RMB Enit = “ << xEmitRMS << “\n";:

cerr << xBEmtFrac; // Dunp the vector of the horizontal emttance
/1 distribution to the console.
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A simpler way to get these calculations done for you, and have the results printed in a readable
format to a stream, use either:

showEmi t Base(mai nHerd, cout); // this routine dunps emttance
/1 information for any specified herd.
showEm t (cout) ; /1 this only works for the mainHerd.

3.3.1.2 Canonical Coordinates

The canonical coordinates of a particle are the coordinates in the transformed coordinate system,
in which the betatron oscillations are circular. These are used in many of the diagnostic
calculations, but may also be of interest to the user. Executing

OFstreamfio(“test.dat”, ios::app) // get a file ready to append to.
dunpEANdCC( mai nHerd, fio); // dunp the tunes and canonical coordi nates

dumps the following quantities on a separate line for each member of a herd to the prescribed
stream: horizontal emittance (p-mm-mrad), : 2) vertical emittance (p-mm-mrad), 3) canonical x
coordinate (mm), 4) canonical y coordinate (mm), 5) canonical X momentum (mrad), 6) canonical
y momentum (mrad), and 7) dp/p .

3.3.1.3 Action Variables;

The action variables (i.e. Courant-Snyder actions) of a herd can be calculated and dumped to a
stream. For example:

cal cActions(mainHerd); // calculate the action variables for each
/1 macro-particle in the mai nHerd.

The action variables are stored in the vectors xAct i on and yAct i on (unitless). The quantities can
be calculated and dumped to afile with:

OFstream fio(“Actions.dat”, ios::out) // create a file.
dunpActions(mai nHerd, fio); // ~calculate and print the action variabl es
/1 for each particle in the mainHerd.

The dump file has the following quantities on a separate line for each particle in the herd: 1)
horizontal action, 2) the vertical action. See the description below of the dunpTAndA routine in the
Transfer Matrix module a so, which dumps both the actions and tunes of each particle.

3.3.1.4 Moments

Moments of the beam can also be calculated. First the average center of the beam is calculated
(<x>, <y>). The horizontal i"" moments are calculated as < (x - <x>)"* >, and smilarly for the
vertical moments. The moments are stored in the Moment class Matrix member _nonent XY(i, j)
which holds

<(X-<x>)t>E < (y-<y>)?t>
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We a0 store the moments normalized by (b,)*™?* (b,)"™" in the Moment class Matrix member
_moment XYNorn(i , ). Notethat i(j) = 3 actually represents the 2™ order moments and i=1
represents the 0™ order moment. These moments can be cal culated and dumped to a file with:

showMbnent s(nai nHerd, 3, fio); // calculate up to 2" order nonents
/1 of the main herd and dunp
/1l themto streamfio.

The format of the moment dump isto first print the order number, and then print the matrices
_nonent XY and _nmoment XYNor min Mathematica format. These moments may also be applied as a
Ring node (see below), in which case the output is printed every turn to asingle line (see below).

3.3.2 Diagnostics Nodes

Any of the above diagnostics can be used interactively at any time. They can be used repetitively
by including them in aloop. However, sometimes it is useful to be able to easily get diagnostic
information about a beam many times as it traverses the ring a single turn (“high frequency”
diagnostics) . Use of the above functions to do this would be tedious. Therefore, a special derived
Node class (Di agnost i cNode) is used to facilitate easy implementation of many diagnostics about
aring. The Di agnost i cNode classisitself also abase class, and classes derived from it (1)
perform a diagnostic calculation, and (2) print the diagnostic results to afile. Specia routines are
provided to automatically add these nodes after each transfer matrix in the lattice being used®.

The Diagnostic nodes can be added anytime during a run. By default they are inactive, and are
skipped over until they are activated. After they are used, they may subsequently be deactivated,
and “normal” tracking calculations can be continued. These nodes can be activated and
deactivated as much as needed, but use caution with them, as large amounts of data may be
output when they are active.

3.3.2.1 Moment Nodes

The beam moments described above can be printed at an ring azimuthal position by adding a
“nmonent Node” in the appropriate location. For example:

/1 stick a nmonent node at node position 22,
/1 cal cul ati ng beam noments up to order 3:

addMorrent Node(“ monent Node”, 22, 4, “Monent Dunp.dat”);
acti vat eMonent Nodes() ; /1 activate this nonment Node
doTurn( 10); /1 turn the mainHerd 10 turns
deact i vat eMonent Nodes(); // deactivate this nonment Node

doTurn( 100); /1 track the mainHerd sone nore
/1 wi thout dunping nonents.

° To get diagnostics at finer intervals than the lattice transfer matrix representation, you must generate another
lattice set, with finer spacing of transfer matrices.
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Each line in the dump file (* MomentDump.dat” in the above example) has: (1) the number of
completed turns, (2) the azimuthal location of the present turn (m), (3) the integrated azimuthal
distance the mai nHer d has traveled since the start of the run (m), and then the beam momentsin
order: (1,1), (2,1), (1,2), (3,1), (2,2), (1,3), (4,2), ... (4,2), ...

Where the first index = (horizontal moment+1) and the second index = (vertical moment+1).

It is possible to add a set of moment nodes after each transfer matrix advance al around the ring
with:

/1 stick a nonent node after every transfer matrix in the ring
/1 cal cul ati ng beam nonments up to order 3:

addMorent NodeSet (4, “Monent Dunp. dat”);

acti vat eMonent Nodes() ; /1 activate this nonment Node

doTurn( 10); /1 turn the mainHerd 10 turns

deact i vat eMonent Nodes(); // deactivate this nonment Node
doTur n( 100); /1 track the mai nHerd sone nore.

If the transfer matrix advance is small compared to the betatron oscillation length, the output from
this set of diagnosticsis useful for looking at the oscillations in the moments of the beam.

3.3.2.2 Satistical Lattice Parameters

Statistical lattice parameters for a herd can be calculated using this diagnostic. The statistical
|attice parameters are calculated using the moments of the canonical coordinate variables
discussed above, along with the emittance. These nodes are called “ StatL at” nodes and use the
StatL atDiagnostic class. A single statistical |attice parameter node can be added using:

/1 stick a StatlLatnode at node position 22,
addSt at Lat Node( “ St at Lat Node”, 22, “Statlat.dat”);

activat eSt at Lat Nodes() ; /1 activate this StatLat Node
doTur n( 20); /1 turn the mainHerd 20 turns
deacti vat eSt at Lat Nodes(); // deactivate this StatlLatNode

Each line in the output file (“ StatL at.dat” above) contains: (1) the turn number, (2) the azimuthal
position around the ring (m), (3) the statistical horizontal beta (m), (4) the statistical vertical beta
(m), (5) the statistical horizontal alpha, (6) the statistical vertical apha, (7) the lattice horizontal
beta (m), (8) the lattice vertical beta (m), (9) the lattice horizontal alpha, and (10) the lattice
vertical alpha. It is possible to add a set of statistical lattice nodes all around the ring, to get “high
frequency” lattice information dumped to afile, e.q.:

/1 stick a StatlLat node after every transfer matrix in the ring
addsSt at Lat NodeSet (4, “Mnent Dunp. dat”);

activateSt at Lat Nodes() ; /'l activate this StatLat Node
doTurn(3); /1 turn the mainHerd 3 turns
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deacti vat eSt at Lat Nodes(); // deactivate this StatlLatNode

doTurn( 100); /1 track the mai nHerd sone nore.
3.3.2.3 Poincare Moment Tracking Nodes

Poincare Moment Tracking Nodes (PMTNode) are provided for tracking the coordinates of
individual test particles, at every oscillation period of a prescribed moment of the mai nHer d. This
can be used to generate plots of islands and separatrices if the appropriate test particles are used.

Thisis only meaningful only if the transverse space charge calculation is on, and the lattice being
used is fine enough so that the transfer matrix advance is shorter than the moment oscillation
length. The procedure works by following multiple herds. First, after every transfer matrix
advance, the requested moment of the mai nHer d is calculated. If it isfound to me a maximum, the
coordinates of the particles of any other herd with member _f eel sHerd set to 1 are dumped to
the prescribed file. Since there should be afine distribution of these nodes around the ring in
order to “catch” the maximum of the moment oscillation, afull set of these nodes should be
employed. As an example:

/] Add a PMI set:

addPMINodeSet ("PMITest.dat", 2,1); // track at horizontal 1st order nonent
/1 oscillations
/1 Make a test herd:

Integer testHerd = addMacroHerd(10); // small test herd

set Her dFeel Level (testHerd, 1); // this herd only feels the mainHerd.
addMacr oPart Base(test Herd, 10., 0.1, 5., 0.1);

addMacroPart Base(testHerd, 1., 1., 0.1, 1.);

doTurn(2); // Turn the main herd a few turns:

// Turn both herds 3 turns with PMI' s on:

acti vat ePMINodes() ;
turnHer ds(3);
deacti vat ePMI'Nodes() ;

The output in the file “PMTTest.dat” contains on each line: (1) the turn number, (2) the azimuthal
position (m). Then on the same line, for each particle in the test herd being used : (3) the
canonical horizontal position (mm), (4) the canonical vertical position (mm), (5) the canonical
horizontal momentum (mrad), and (6) the canonical vertical momentum. This technique can
create large output filesif test herds with many particles are tracked.

3.3.3 General Diagnostic Node Status

One can get a status report of all the diagnostic nodes in the ring sent to a stream with the
command:

OFstreamfio(“Case_1 2 3.out”, ios::out) // create a file.
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showDi agnosti cs(fio);
showDi agnostics(cout); // show a list of all diagnostic nodes in the
/1l ring to the screen

This listing includes the status of each node’s _act i veF! ag.

3.2 Parallel Runs

It ispossibleto run ORBIT in aparallel processing mode. The approach taken here isto launch
multiple ORBIT processes on different CPUs, each parsing the same input script file. Most of the
calculation proceeds independently on each processor, with the exceptions:

- Initiadization of the random number seed used to generate macro-particles from prescribed
distributions

- Space charge calculations

- Diagnostic calculations

- Output

Other calculations such as lattice matrix advances, aperture checks, thin lens kicks, etc. have no
need for parallel communication and are exactly the same asfor a seria run.

3.2.1 Parallel Nuts and Bolts

We use a message passing “master-dave” method for the parallel implementation here. In
particular, PVM is used to do the message passing™ (see reference 6). This package is free, and
available for most computing platforms. It has been tested with ORBIT using version 3.4.0. The
PVM package must be installed on your computer before you build ORBIT. Then define the
environment variable PVYM_ROQOT to be the installed directory of PVM. Then build ORBIT. If
you do not have PVM installed on your system, ORBIT will build fine, but the parallel capability
will not work. Also, If you want to run parallel, it is advisable to have a system of CPUs
connected with fast (at least 100 Mbs) switching. Parallel space charge calculations on work
station clusters connected with 10 Mbs TCP will perform poorly.

Before starting a parallel run, the vitual parallel machine must be set up. Thisis done by running
the pvm daemon. It is possible to construct a “hostfile” containing the names of all the nodes of
the parallel computer, and the directories containing the ORBIT executable and the input script
file (i.e. where you want to work). Here' s an example hostfile (see the PVM manual for details):

* wd=/ hone/ j dg/ Accel er at or/ ORBI T/ wor kPar al | el
ep=/ hore/ j dg/ Accel er at or/ ORBI T/ LI NUX
alice.sns.ornl.gov

cheshi recat. sns. ornl . gov

19 This package is also used in the driver shell to facilitate parallel optimization and uncertainty analysis. However,
the implementation here is independent of that used in the driver, in part to make it easier to switch to MPI if we
decide to later.
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whi t er abbi t. sns. ornl . gov
caterpillar.sns.ornl.gov
madhatt er. sns. ornl . gov

The parallel calculation initiation routines are in the Parallel module. This module contains
routines for parallel calculation set up and spawing of the child processes. However, most of the
actual parallel message passing is in the space charge and diagnostic/output routines. If the
calculation isaparald one, the switch Paral | el : : paral | el Run isautomatically set to be true
(2), and message passing synchronization routines are implemented when needed in the space
charge, diagnostic and output modules.

Some paralld settings and output of interest are

User input:
dataEncodeType: set to O for full encoding, required for use on heterogeneous parallel computers.

set to 1 for no encoding, faster communication and ok for homogeneous parallel
computers.

spawnOnParent — swith to contol whether to spawn a child on the same CPU as the parent.
Default setting is 0 (don’t do it). Set ==1 to spawn a child process on the parent CPU.

Set by ORBIT:
nJobs - Thisis set in the startParallelRun routine, and contains the number of parallel jobs

started.
IAMAChild — == 1if achild process, == 0 if it's the parent process.

Also note that timing arun is different for aparalel run. A useful indicator of run time is the wall
clock time. An example of getting thisis shown in the example in the section below.

3.2.2 Parallel Calculation Flow and I mplementation
3.2.2.1 General parallel calculation flow

Parallel runs must be run with an input script file. The basic structure of a paralel input script is
shown schematically in Fig. 3.1. An example script file is shown below aso, with the parallel
calculation dependent pieces highlighted. The paralel calculation is started by having ORBIT read
an input file that is set up to do aparallel calculation, e.g., by typing

ORBIT parallel.sc

The origina process started in this manner will be the parent. Early in the input script, isacall to
thestartParal | el Run(String &ame) routine. The argument to this routine should be the
name of the input file being parsed. This routine will spawn ORBIT on all the other machines
active on the virtual machine (see above) and tell them to read the specified input file, which
should be the same file as the parent read. Don’t worry, if achild calls this routine it will not
spawn more ORBIT process, causing an explosive growth of ORBIT processes. Now there are a
bunch of ORBITs running on different processors, reading the same input script file. Note the call
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to syncSeeds() in the example script below. This call ensures that each process uses a unique
random number seed, so they do not all track the same herd!

The ring node structure set up is the same as for a seria run. The macro-particle setup is pretty
much the same, except do not track any macro-particles on the parent (see the example below).
The strategy taken in the present ORBIT paralization is to use the parent to corredinate al the
message passing, and not spend time tracking. If you do not like wasting a CPU with no tracking,
set the spawnOnParent to 1, and a child ORBIT process will be spawned on the same CPU as the
parent.

Y ou can have the calculation proceed as a seria calculation once the macro-particle and node
structure is set up. For instance you could loop through some doTur n and showTur nl nf o calls.
The output routines are set up so that the parent gathers information from all the children, and
only it sends information to a stream. Each process reads the same input script and follows the
same calculation path prescribed in the script. Any node cal culations that require communication
between the child processes have appropriate message passing built in.

An example of aparallel calculation is shown below.
FEEEEEEErrrr e rrrrn
/1 Parallel stuff
FEEEEEEErrrr e rrrrn
dat aEncodeType = 1; /1 Raw - no encodi ng.
startParal |l el Run(" TargProf Parallel.sc");
syncSeeds() ;
cerr << "Done with Sync seeds, nunber of // jobs =" << nJobs << "\n";

/1 set up file streanms as usual
/1 set up macro distributions to sanple from as usual

nMacrosPer Turn = 0; // don’t |aunch any macros anywhere!
nMaxMacroParticles = 216*1158; // this is per node
i f(i AmAChi | d)
nMacrosPer Turn = 216; // if this is a child process |aunch 216
macr os per turn.

nReal s_Macro = 2. 0el4/ (nMaxMacroParticles * nJobs); // different for
paral l el run:

/1 Set up nodes as usual

String t;
if(!'i AmAChild) { /1 print the starting wall clock tinme
dat eTi me(t);

fio << "Starting at " <<t << "\n";
cerr << "Starting at " <<t << "\n";
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for (_i=1; _i<=24; _i++) [/ Do 600 turns

doTur n(50);
showTurnlinfo(fio); // dunmp turn info to a
showTur nl nfo(cerr);

}

if(!'i AmAChild) { /1 print the final wall clock tinme
dat eTi me(t);
fio << "Done at " <<t << "\n";
cerr<< "Done at " <<t << "\n";

}

/! Final diagnostics / output as usual
qui t

Input Script File

spawn children which read same input script
(parent only)

v
ring node Set-up

\
macro-particle Injection Scheme
(chi Idren only)

do Turns
Loop a
4:| while
send output

(parent only)

v
Quit

Fig 3.1 General flow of the input file script and calculation of a parallel run.

3.2.2.2 Transver se space charge calculation

The most time critical parallel calculation is the transverse space charge calculation, and as such is
described briefly here. As herds are tracked in parallel around aturn on different processors, at
each space charge kick node, the collective force must be gathered and communicated between

23



nodes. Typicaly thiswill happen 100’'s of times per turn. The strategy taken to parallélize this
calculation is shown in Fig. 3.2. Note that each child calculates its own FFT of the Greens
function and the global charge distribution. Thisis faster than waiting for one processor to do it,
and passing the results.

Parent Child
start start
set'up PIC grid based on
macros
v

sync grid <4—» sync PIC grid

bin macros

\
get global charge €«——— sendlocal charge
distribution distribution

set up Greens function

v

FFT Greens function

send global charge get global charge

—>

distribution distribution
return convolute charge &

Greens function

backward FFT for forces

Fig. 3.2 Parallel flow logic for the transverse space charge calculation.

3.2.2.3 Capabilities NOT parallelized yet:

- All moment diagnostics

- StatLat diagnostics

- Cannonical coordinate diagnostic

- Poincarre moment tracking diagnostic
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4. Modules Governing Derived Node Classes

4.1 Transfer Matrix Module

Transfer matrices are a fundamental mechanism used to transport macro-particles from one point
inaring lattice to another. A TransMat ri xBase classis provided to contain transfer matrix
information. Thisis a base class, and there are two sub-classes, afirst order transfer matrix
(TransMat ri x1) and a second order transfer matrix (Tr ansMat ri x2) At present, these matrices
must be generated externally.

4.1.1 First order transfer matrices:

To directly add afirst order transfer matrix to the list of ring nodes, the following routine from
the Transhvat module can be used:

Voi d addTransferMatri x(const String &ane, const Integer &order,
const Real Matrix &R, const Real &bx, const Real &by,
const Real &ax, const Real &ay, const Real &ex, const Real
&epx, const Real &)

Here or der isthe oi ndex node value (i.e. where in the ring it is situated), R is the 6x6 1% order
transfer matrix, bx(y) isthe horizontal (vertical) beta value at the beginning of the element [m],
ax(y) isthehorizonta (vertical) alphavaue at the end of the element, ex is the horizontal
dispersion [m] value at the end of the element, epx isthe horizontal dispersion derivative (m)
value at the end of the element, and | isthe length of the element [m].

4.1.1.1 Using externally generated transfer matrices:

A transfer matrix can be added directly from the Shell with a call to the addTr ansf er Mat ri x
routine, but thisis arather cumbersome process. Two routines are provided which read externaly
generated files to get the Transfer Matrix information for an entire ring:

Voi d readDI MADFi | e(const String &s1 )
Voi d readMADFi | e(const String &s, const String &s)

The arguments of these routines are the names of the file to read. Each of these routines reads the
specified file, parses it appropriately to find the transfer matrices, and makes the appropriate calls
to the addTr ansf er Mat ri x routine. The transfer matrices are assigned order indices starting with
10 for the first transfer matrix and incremented by 10 each following one. This allows room to
subsequently insert additional nodes between the transfer matrix nodes.

4.1.1.2 Using DIMAD to generate the lattice transfer matrices:

Ther eadDl MADFi | e routine expects to read afile produced by the code DIMAD [3], in the same
format as that used by ACCSIM [2] to enter the transfer matrices. For example the call

readDl MADFi | e(“SNSLattice.dnm”);
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will read afile named SNSLat t i ce. dno (created by the code DIMAD [3] ) and add a transfer
matrix for each matrix produced by the sequence at the end of the DIMAD input. The procedure
for creating the DIMAD fileisto first construct a standard lattice file which generates the usual
listing of Twiss parameters. Then each internodal transfer matrix must be explicitly printed by
using the DIMAD input file sequence:

print
interval markerl marker2 99 end,
-11 1,

where mar ker 1 and mar ker 2 are predefined markers in the lattice. This means that unique
markers must be included everywhere in the lattice where a transfer matrix is desired. This
process works well for situations when many ring elements are lumped together and there are only
alimited number of transfer matrices desired (~ 10’ s of matrices). When tracking needs to be
subdivided into many small steps, as needed with transverse space charge, 100's of transfer
matrices are needed and the generation of the DIMAD input is tedious and error prone. The
following described use of MAD [4] generated transfer matrices is recommended in this case.

4.1.1.3 Using MAD to generate the lattice transfer matrices:

The readMADFi | e routine expects to read two files generated by MAD. Thefirstisa TWISSfile
and the second file contains the transfer matrices. The format of the command is

readMADFi | e(“ SNSTwi ss. out”, “SNSTM out”);

Thereis one piece of information that should be input independently from the above call, namely
the transition gamma. E.g., also include aline like:

gammaTrans = 4. 93,
The Twiss file can be generated by including aline in the MAD input file like:

TW SS, SAVE, TAPE=SNSTw ss. out

And thefirst order transfer matrix file“SNSTM out ” is generated by including aline like

SELECT, FLAG=FI RST, RANGE=#S/ #E

in the MAD input file, and by redirecting the output to the file SNSTM out . Thisis aconvenient
way to produce the transfer matrices between each element of a Ring lattice, without going
through the cumbersome DIMAD set up procedure.

For both the MAD and DIMAD file reading routines, each transfer matrix member is added with
an _oi ndex valueincremented by 10 from the previous transfer matrix (the initial transfer matrix
_oi ndex vaueis10). Thusthereisroom between each transfer matrices to add more Nodes
(like a space charge kick, diagnostic, fail, etc.).
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4.1.1.4 Thefirst order Transfer Matrix Node cal culations

Presently the code simply advances the macro-particles of a specified herd through the linear
transfer matrix. The same transport equations as used in ACCSIM [2] are employed here. Also, as
discussed below, some tune shift calculations are optionally provided here.

4.1.2 Second Order Transfer Matrices:

This capability is experimenta at present.

4.1.3 Tune Shift Calculations:

Note: this set of calculations will likely be moved to a diagnostic module in the future.

Tune shifts calculations are possible for aherd. Thisis useful when transverse space charge kicks
are employed, or a second order matrix advance is used (otherwise the particles just have the bare
lattice tune). There are two tune shift calculations provided. One method involves following the
phase advance of each macro-particle asit is advanced through each transfer matrix. Aslong as
the are enough transfer matrices included to alow tracking steps small compared to the betatron
period, this technique will allow computation of the absolute tune of each particle.

This method is low and should not be employed during long runs, but rather at the end of arun
or during a*“snapshot turn”. The following input file fragment shows how the tunes could be
calculated and dumped to afile during arun:

doTur n(1000) ; /1 do 1000 turns of the mainHerd

useSi npl eTuneCal c=Fal se; // default val ue anyway, but let’s be clear
start TuneCal c(); /1 start cal cul ating tunes

doTurn(1); /1 calculate the tunes over one turn
stopTuneCal c(); /1 stop calculating the tunes, and tally the

/1 tunes for each particle.
OFstream fio(“tunes.out”, ios::out); /1 make a file to dunp tunes to
dunpTAndA( mai nHerd, fio); // print the tunes and actions to fio
/1 plot tunes to screen, for those with the PLPLOT package built in:

scatterpl ot = True;
xyPl ot (yTune, xTune, xLabel ="nu-x", ylLabel ="nu-y”, mark=dot);

doTurn(999); /1 do nmore turns w thout cal culating the tunes.

If the switch useSi npl eTuneCal c isset to 1 (or Tr ue), the betatron phase is checked only at the
beginning and end of aturn, and the phase advance is calculated from these two quantities. In this
case, only the fractional tune (between 0 and 1) is calculated. Otherwise each particle tuneis
calculated as described above. This method is much faster than the above method. However,
when calculating the tunes with useSi npl eTuneCal ¢ non-zero, severa restrictions apply. First,
additional macro-particles can not be added to the herd while the tunes are being cal culated.
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Secondly, only one turn should be done between the st art TuneCal ¢() and st opTuneCal c()
cdls. Thisisto ensure aunique solution. If you would like to average the tune calculation over
severa turns, with this method, do something like:

doTur n(1000) ;
useSi npl eTuneCal c=Tr ue;
for(_i=1; _i <= 10;

{

}

start TuneCal c();
doTurn(1);
stopTuneCal c();

_i++)

/1
/1
/1
/1

/1
/1
/1
/1

do 1000 turns of the mainHerd
Only get the fractional tune
Aver age tunes over 10 turns.
Note: _i is a built-in SuperCode Integer

start cal cul ating tunes

cal cul ate the tunes over one turn

stop calculating the tunes, and tally the
tunes for each particle.

WARNING: Do not try to calculate the tune with closed orbit bumps on, unless the closed orbit
bumps to not have any transfer matrices between them. For example, the following sequence is

OK:

StartTuneCalc()
UpBump

Fail
DownBump

Bunch of transfer matrices

StopTuneCalc()

The following sequence would give incorrect tunes:

StartTuneCalc()
Foil
DownBump

Bunch of transfer matrices

UpBump
StopTuneCalc()

4.2 Injection Module (Foil)

This module includes capabilities for creating particles from specified distributions. It aso
contains a Foil node class. One can generate a specified number of macro-particles at the start of a
run and track them, or automatically inject a specified number of macro-particles at the foil at
each turn. Also foil scattering can be used.

4.2.1 Specifying the injected particles distribution types.

Macro-particles can be sampled from prescribed distribution types. The phase space distributions
which are sampled by the I nj ect Par t s routine are specified by calls to the routines:

Void addXl nitializer(const String &, Subroutine subX)
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Voi d addYlnitializer(const String &, Subroutine suby)
Voi d addLongl nitializer(const String &n, Subroutine subl)

These routines tell the I nj ect Par t s routine what routines to use to sample the horizontal,
vertical and longitudinal distributions respectively. For example, “subX” will be called to provide
the x, X' values for a new macro-particle. The values provided by the specified sampling routines
are displacements (the dx, dx’,dy, dy’, dE and df) which are assigned to the variables
dXinj (mm), dxPlnj (mrad), dvinj (mm), dYPInj (mrad), deltaE (GeV), and phi
(rad). These displacements are added to the central coordinates of the injected beam (Xo, X o, Yo,

Y o) which are given by the quantities x01 nj, xP0I nj, yOInj, and yPOlnj respectively. The
central coordinates are provided to facilitate injection offset from the closed orbit, if desired. You
can write your own initialization routine in the input shell script, or smply refer to one of the built
in routines discussed below.

4.2.2 Built-in distribution types
4.2.2.1"“ Joho” —binomial forms:

Some built-in routines are available for the purpose of randomly sampling common distribution
types. The JohoXDi st , JohoYDi st and JohoLongDi st routines supply values sampled from
“Joho” horizontal , vertical and longitudinal distributions respectively, where the Joho distribution
isageneral binomia form taken from Ref. 2. In fact, this entire distribution type follows directly
from ACCSIM [2]. For al the “Joho” distributions types, tails can be added. An example setup
for using JohoXDi st is:

x0lnj = 30.; xPOlnj = 0.; /1 horizontal center of the injected
/1 di stributiom (mm nrad)

al phaXinj = 0.5;betaXInj = 10.; // lattice paranmeters for the injected
/1 distribution, beta in m

epsXLimnj = 10.; // Limting emttance of injected
/1 di stribution (pi-nmnrad)
MXJoho = 3; /1 binom al factor

addXInitializer(“Truncated Gaussian X', JohoXDi st);

It is possible to add tails to the “ Joho” distributions. For example the following additional
specifications:

xTai | Fracti on

=0.3; // 30%of the particles are in the “tail”
xTai | Factor = 2.2;

// The “tail” dist is
// 2.2 times > than the nornmal dist.

specifies that 30% of the particles created will have an emittance 2.2 times that of the nominally
specified value (with epsXLi i nj ). The vertical distributions can be set up similarly by
substituting “y” for “x” above. There is an option to use alongitudinal Joho distribution also, but
here the distribution extent is determined by specifying the limiting longitudinal phase angle

(phi Li m nj in degrees) and the limiting energy spread (dELi m nj in GeV). For example:

M_Joho = 1; /1 uniformlongitudinal
PhiLim nj = 100.; // injection bucket is from-100 < phi (degrees) < 100
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addXInitializer(“UniformLong”, JoholLDist);

A Uni f or mLongDi st () routine supplies samples from a uniform longitudinal distribution in
energy and phase. Also the GULongDi st can be used for longitudinal distributions which are
uniforminf and gaussian (optionally truncated) in energy. See the Injection.mod and Injection.cc
files for a complete description of the built-in sampling routines.

Note that the user can provide her own, say, horizontal distribution sampling routine in an input
script file, and simply point to it with the “addXi ni ti al i zer” call, without recompiling. For
example,

/! randomy assign the horizontal distribution to the discrete points:
/[l x =-5, -4, ...5. mm and x’ = 0 nrad

Voi d newHor Di st ()

I nt eger seed=1;
dXlnj = -5. + Integer(11.*ranl(seed)); // ranl is a built-in random

/1 nunber generator (between 0, 1)
dXPlnj = 0.;

}
addXInitializer(“Di screte X', newHorDi st);

4.2.3 Continuousinjection at a fail

The Injection module contains aFoi | class which includes information about the foil. Generally a
Foil node will be at the beginning of the ring, but it doesn’t have to be. A Foil node can be
included with acall to the routine:

Voi d addFoi | (const String &ane, const Integer &order,
const Real &M n, const Real &xMax, const Real &M n,
const Real &yMax, const Real &thick)

Here name is a name of the node, order isthe _oi ndex Node value, xM n( xMax) isthe minimum
(maximum) horizontal foil extent in mm, yM n(yMax) isthe minimum (maximum) vertical foil
extent in mm, and t hi ck is the foil thickness (mg/cm?). For example, the call:

addFoil (“Foil”, 2, 20., 30., 20., 100., 300.);

inserts a Foil node at point 2 in the ring, with 20 < x(mm) < 30, and 20 < y(mm) < 100, and with
athickness of 300 (my/cm?). Each time the Foi | node is encountered the routine

I nj ect Part s(nMacr osPer Turn) iscaled. Thisroutine will pick nMacr osPer Tur n macro-
particles from the prescribed distributions (see above), and add them to the mai nHer d ensemble
until a maximum of nMaxMacr oParti cl es macro-particles have been injected.

4.2.4 The Foil Node calculations
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In the _nodecCal cut or routine, particles are injected as described above(if the mai nHer d isbeing
pushed through the ring). Also if foil scattering is active, some beam energy dependent quantities
are calculated. Inthe _updat ePar t At Node routine, foil traversal events are tallied for each
macro-particle. Also if foil scattering is active, each macro-particle is scattered if it intersects the
foil.

4.2.4.1 Foil Scattering
If the variable useFoi | Scattering == 1 (or True), foil scattering is modeled, using the

ACCSIM single scattering model described in Ref. 2. In this case the following quantities are
used:

foilZz = 6; /1 default charge nunber
foil AMU = 12.01; // default nass AMJ
rhoFoil = 2.265; // default foil density (g/cnB)

muScatter = 1.35; // default effective atom c radius paraneter
/1 (see ACCSI M manual ).

which can be overridden by the user in the input script.

Foil information can be dumped to a stream using:

showroi | (fi0);

wherefi o isadefined Ostream such as “cout ” for the console. One can manually cause the foil
parameters to be updated with the call:

m scFoi | Cal cs();

and subsequently dump specific foil information to a stream. A common foil quantity of interest is
avgFoi | Hi t s, which isthe total number of foil traversals divided by the total number of macro-
particles. See the file Injection.mod for more information on foil parameters.

4.2.5 Creating a distribution using built-in initializer swithout a Fail

A set of macro-particles for the mainHerd can be created using the initializtion routines discussed
above without using afoil. TheaddXi nitializer, addYlnitializer, and

addLongl ni ti al i zer routines are called as above to specify the distributions you want to sample
from. Then, for example, calling

nMaxMacr oParti cl es = 10000;
I nj ect Part s(10000) ;

will add 10000 macro-particles to mai nHer d , which can subsequently be tracked. Be sure you
have first specified which distribution functions to use though (see above).

4.3 Bump Module
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The closed orbit of the ring can be artificialy altered anywhere in the Ring by introducing an ideal
bump. The bump positions can aso be afunction of time. Thisis typically done directly before
(and after) aFoi I node to facilitate painting of the ring phase space distributions. The node sub-
class used to contain the bumpsisthe | deal Bunp. WARNING: Bumps should be added in pairs:
an “up” bump, and a*“down” bump! An | deal Bunp node can be added with the routine:

Voi d addl deal Bunp(const String &iane, const Integer &order
const Integer &upDown, const Subroutine sub)

Hereor der isthe _oi ndex vaue specifying wherein the ring the bump is. sub isthe name of a
routine that will specify the bump values as a function of time, and upDown isaswitch indicating
whether the bump is moving the closed orbit up (==1) or down (!=1). Note that the same routine
should be specified by “sub” when adding both the “up” and “down” bumps, to ensure no net
movement of the closed orbit. The routine specified by sub, which is called to provide the bumps
as afunction of time is expected to set the variables:

x| deal Bunp - "The x value of the ideal bump at a point in time (mm)",
xPI deal Bunp - "The x prime of theideal bump at a point in time (mrad)"”,
yl deal Bunp - "They vaue of the ideal bump at a point in time (mm)",
yPI deal Bunp - "They prime of theidea bump at a point in time (mrad)"

asafunction of the variableti me [msec]. These variables are then used to modify the closed
orbit parameters, and accordingly the values of x,x’,y,andy’ of each macro-particle.

4.3.1 Using built-in bump forms:
Some bump as afunction of time are built in. These are described here.
4.3.1.1 Exponential bump form 1:

An exponentially decaying bump profileis provided in the routine eFol dBunp. It assumes
profiles of the form

where Xo iIsthe initia (final) x bump position, D is the total bump period, and t isanormalized
time constant. The X', y and y’ bumps are specified in asimilar manner in the eFol dBunp()
routine. The variable names for these quantities are described in the Bump.mod file. For example,

addl deal Bunp( “upBunmp”, 1, 1, eFol dBunp); // add a closed orbit “up” bunp
/1 at node point 1, using the eFol dBunp routine.
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addl deal Bunp(“downBunp”, 5, -1, eFol dBunp); // add correspondi ng “down” bunp

xBunpO = 20.; xBunpF = 0.; /1 bunp from20 to O nm hori zont al

xPBunmpO = 0.; XPBunmpF = O0.; /! bunp fromO to O nrad

t BunpO0 = 0.; tBunpF = 0.974; /1 bunp is on fromO to 0.974 nsec
eFol dTi meX = 4.; /1l 4 efolds will occur between tBunpO and t BunmpF

Similar notation is used for the vertical bump setup with x(X) replaced by y(Y). If times>
t BunpF are used, the final bump values are used (i.e, xBunpF, xPBunpF, yBunpF, yPBunpF).

4.3.1.2 Exponential bump form 2:

Exponentia decaying bump profiles can be input in the form:
-t

X(t) = X%, + x,e'

Using the eFol dBunp2 routine. For example:

addl deal Bunp( “upBump”, 1, 1, eFol dBunp2); // add a closed orbit “up” bunp
/1 at node point 1, using the eFol dBunp2 routine.
addl deal Bunp(“downBunp”, 5, -1, eFol dBunp2); // add correspondi ng “down” bunp

xBunpO = 20.; xBunpl = 10.; /1 bunp starts at 30 nm horizonta
xPBumpO = 5.; XPBunmpl = 2.5; /1 bunp starts at 7.5 nrad
eFol dTi mreX = 4.; /] e-fold tine = 4 nsec.

Similar notation is used for the vertical bump setup with x(X) replaced by y( V).
4.3.1.3 Interpolate Bump coordinates.

The closed orbit bump coordinates can be prescribed by linear interpolating between input data
points using thei nt er pol at eBunps routine. The procedure isto first size and fill a set of
vectors containing the bump points to use for interpolation. Then insert a pair of up/down bumps
which use thei nt er pol at eBunps routine to scale the ideal bump coordinates. The following
example illustrates this procedure for a case with two points for interpolation (i.e. alinear bump):

si zeBunpPoi nt s(2); /1 use 2 bunp points

/1 The time (abscissa) points for the interpolation are
/1 0 and 0.5 nsec:
bunpTi mes(1) = 0.; bunpTines(2) = 0.50;

yBunpPoi nts(1) = 16.; /1 y is bunped from16 to 0O mMn

yBunpPoi nts(2) = 0.;

yPBunmpPoi nts(1) = 2.2044; // y’' is bunped from2.2044 to O nrad
yPBumpPoi nts(2) = 0.;

xBunpPoi nts = 0. ; /1 the x (horizontal) direction
xPBumpPoints = 0.; // is not bunped at all here!

/! add a closed orbit up bunp at the end of the ring:
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addl deal Bunp( “upBunp”, 9999, 1, inter pol at eBunps);

/1
/! add the closed orbit down bunp near the beginning of the ring:
addl deal Bunp( “upBump”, 3, -1, interpol ateBunps);

More interpolation points can be included, but be sure to adequately size the bump point storage.
4.3.2 User specified bump form

The user can add a routine to specify any sort of bump profile in the input script file, and smply
refer to thisroutine in the addl deal Bunp call. For example the following set of commands would
create and activate the use of trigonometric bump forms::

Real bunpFrequency =1
Voi d trigBunps()
{

/1 x goes from10 to O mm (0 < t(nmsec) < pi/4 nsec)

xl deal Bunp = 10. * cos(time*2*pi* bunpFrequency);

/1 x* goes from-10 to O nrad (0 < t(nmsec) < pi/4 nsec)
xPl deal Bunp = -10. * cos(tine*2*pi* bunpFrequency);
/1y goes fromO to 10 mm (0 < t(nmsec) < pi/4 nsec)

yl deal Bunp = 10. * sin(tinme*2*pi* bunpFrequency);

/1y goes fromO to 10 nrad (0 < t(nmsec) < pi/4 nsec)
yl deal Bunp = 10. * sin(tinme*2*pi* bunpFrequency);

}

/! add the new trig closed orbit up bunp at the end of the ring:
addl deal Bunp(“upBunp”, 9999, 1, trigBunps);
/1
/! add the new trig closed orbit down bunp near the beginning of the ring:
addl deal Bunp( “upBump”, 3, -1, trigBunps);

4.4 Acceleration Module

4.4.1 Non-accelerating RF

This node is provided to add RF cavities. The Node sub-class for this purpose is the RFCav class,
which inherits the base class Accel er at eBase. For this class of RF Cavity the synchronous phase
isaways assumed to be 0. The genera capability isto provide the voltage as the sum of an
arbitrary number of harmonics, and as a function of time. The user must specify the number of
harmonics to be used, vectors containing the amplitudes and phases of each voltage harmonic, and
(if the voltage is ramped with time) a routine providing their waveforms. The RF Voltage for a
cavity is assumed to be of the form:

VRF = évi Sin(hif - f i)’

i=1,n
where n is the number of RF harmonics used, V; isthei’th harmonic voltage (kV), h; isthei’th
harmonic number, f;isthei’th harmonic phase (rad) andt isthe time (msec). A steady state RF
cavity with an arbitrary number of harmonics can be added with the routine:



Voi d addRFCavity(const String &, const Integer &0, Integer &nh,
Real Vector &v, Real Vector &hn, Real Vector &p)

The first argument is a name for the node, the second argument is the order number where this RF
cavity appearsin the Ring, the third argument is the number of harmonic components the RF
Voltage waveform has, and the fourth, fifth and sixth arguments are references to Real Vectors
containing the RF voltage (kV), harmonic number, and phase offset(rad) of each harmonic
component of the RF voltage, respectively. The RealVectors referenced in this call can be
created, and initialized, on the fly prior to this call. An example of thisis:

I nteger nHarms = 2,

Real Vect or RFVol t s(nHarns), RFHar mNunber (nHar ns), RFPhase(nHrans);

RFPhase = 0.; // Al conmponents have phase = 0;

RFHar mMun{1) = 1; RFHarm\Num(2) = 2; // use 1% and 2" harnonics

RFVol ts(1) = 40.; RFVolts(2) = -20.; // 1st conponent = 40 kV, 2" = -20 kV
addRFCavity(“RF Cavity 1", 200, nHarms, RFVolts, RFHarnMNunber,. RFPhase);

It is also possible to specify a pulsed RF waveform. The following example specifies aramped RF
waveform going from 6 to 10.5 kV between 0 and 0.5 msec, and equal to 10.5 kV thereafter.
Only a single harmonic component is used:

I nteger nRFHarms = 1,

Real Vect or Vol t s(nRFHar ns), har mNunber ( nRFHar ns), RFPhase( nRFHr ans) ;
RFPhase = 0.; // phase = 0;

harmNum(1) = 1; // use only the 1% harnonic

Real tFactor;

Voi d PSRVol t s()

tFactor = (time > 0.5) ? 0.5, tine; // check for flattop
Volts(1l) = 6. + 4.5*tFactor;

addRFCavity(“RF Cavity 1", 200, nHarms, RFVolts, RFHarnMNunber,. RFPhase);

The RF waveform can be more complicated than the smple linear ramp example shown above.
4.4.2 Accelerating RF

For an accelerating bunch simulation, three quantities are of particular interest: 1) the time profile
of the dipole field, 2) the time profile of the accelerating RF voltage, and 3) the time variation of
the synchronous phase. Two of these quantities must be specified, and the third solved for.
Presently, support is provided for the case when the field and RF voltages are specified.

To use acceleration the following information about the ring must be specified:

FEEEEEEErrrr e rrrrn
/1 Make a Ring
FEEEEEEErrrr e rrrrn

| R ng = 299. 2; /1 ring circunference (m

gammaTrans = 5.91; /1 transition ganma
rhoBend = 2. * 32./(twoPi); // dipole bend radius (m
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The parameter is provided automaticaly if you read a lattice file (e.g. if you are doing transverse
space tracking). The above snippet was taken from afile that did longitudinal only tracking and
did not use a latticefile.

4.4.2.1 Ramped B Acceleration

This option requires the user to provide the time profile of the dipole field and RF voltages. The
synchronous phase is solved for. If incompatible field/voltage values are specified, the
computation stops with an appropriate message. A ramped B field accel erating node can be
added to the calculation with the routine

Voi d addRanpedBAccel (const String &nanme, const Integer &o,
const Subroutine sub, const Integer &nh,
Real Vector & fv, Real Vector &rfp)

Asusua for nodes, the first argument is a name for the node and the second is the order value
where the node should be placed (around the ring). The third argument is the name of aroutine to
be called that will provide the current dipole field and RF voltages (see below). The fourth
argument is the number of harmonics the RF voltage will use, the fith argument is areference to
the vector containing the RF voltages for each harmonic (which will likely change with time). The
last argument is the vector holding the vector of RF phase shifts for each RF voltage (usually this
iskept at 0, but these can also be varied if you want to get fancy).

When the calculation gets to the accelerating node, the “ _nodeCalculator” first calls the specified
routine to update the field and RF voltage. The user can create some vectors to hold the RF
voltages and phases and write his own routine to scale these parametersin the driver shell. The
field variable that should be provided hereiscaled “Accel er at e: : BSynch” and the
independent time variableis“Ri ng: : time” .

Soecifying a cos form field ramp and use interpolated RF voltage values

However, there are severa built-in capabilities for modeling commonly used accelerating cycles.

One isto assume sine waveforms for the dipole and interpolate RF voltages from an input set of

data. Thisisdone by using the I nt er pol at eV routine. Here the dipole filed is assumed to be of
the form:

B(t) = B, - B, cos(2ptf).
The user must specify the “fixed” field level (Bo, in T with variable BSyncho), the “varying” field
level (B,, in T with vaiable BSynch1) and the ramp frequency (Hz) with the variable BSynchFr eq.

The RF voltage is assumed to be of the form

Vee = @V, SN(if - f).

i=1,n
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The voltage at each node is calculated by interpolating between data read in before the run starts.
The A routine getRampedV (String) is provided to read in this data. The argument here is the name
of the fileto read, and the file format is expected to be of the form:

- thefirst line contains an integer specifying the number of RF harmonics (n)
- each subsequent line contains the following white-space delimited parameters: the timet
(mSGC), Vl(t)1 f l(t)i re Vn(t)1 f n(t)

The nt er pol at eV routine puts the interpolated values of the RF voltages and phases into
predefined vectors RFVol t s and RFPhase, and the number of RF harmonics in nRFHar noni cs,
so be sure to specify these in the call to addRanpedBAccel .
Here's an example of the implementation of the “ramped-V” acceleration node:

ILLTLTLTIII i iririririisg

/1 Add an Accel erati on Node

ILLTLTLTIII i iririririisg

Ri ng: : harmoni cNunber = 2; // two bunches in ring for this case.

cerr << "set up RR\n";

i gnoreNegAcel = 1; // lets inject in falling field and ignore accel
there

/1 Set up the cos formdipole field ranp:

Real Bmin = 0.3124980; Real Bmax = 0.9118358; // in T

BSyncO = (Bmax + Bnmin)/2.;

BSyncl = (Bmax - Bnin)/2.;

BSyncFreq = 30.; // 30 Hz ranp

get RampedV( " SNSCosFormL"); // get data to interpolate RF voltage from
time =-0.7; [/ start injection at —-0.7 nsec

addRanmpedBAccel (" Accel erate”, 15 , Interpol ateV, nRFHarnoni cs,
RFVol ts, RFPhase); // This node goes at |ocation 15.

The input file SNSCosForm1 must be lying around, and here what it looks like:

1

-0.7 30. 0.
0. 65. 0.
0. 0948459 80 0.
0.221275 100 0.
0. 389806 120 0.
0. 614457 140 0.
14. 1111 260 0.
14. 963 250 0.
15. 8148 240 0.
16. 6667 230 0.
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Using interpolated B and RF voltage values

This caseis similar to that above case except that the B field is aso calculated by interpolating
between input data instead of assuming a cos waveform. In this case the | nt er pol at eBV routine
is specified inthe call to addRanpedBAccel . Also routine (get RanpedBV( St ri ng) ) is provided
for use with this option that will read in data to interpolate both B and V. It expects an argument
with the filename of afile containing the following format:

- thefirst line contains an integer specifying the number of RF harmonics (n)
- each subsequent line contains the following white-space delimited parameters: the time t
(mSGC), B(T)1 Vl(t)1 f l(t)i re Vn(t)1 f n(t)

Thel nt er pol at eV routine also puts the interpolated values of the RF voltages and phases into
predefined vectors RFVol t s and RFPhase, and the number of RF harmonics in nRFHar noni cs,
so be sure to specify these in the call to addRanpedBAccel .
Here's an example of the implementation of the “ramped-BV” acceleration node:
FHEEEEErr i rrririrti
/1 Add an Accel erati on Node
FHEEEEErr i rrririrti
Ri ng: : harmoni cNunber = 2; // Two bunches in ring
cerr << "set up Acceleration\n”;
get RanmpedBV( " SNSWaveFor nb") ;
time =0.; // start injection at t=0 nsec

addRanmpedBAccel (" Accel erate”, 15 , | nterpol at eBV, nRFHar noni cs,
RFVol ts, RFPhase); ); // This node goes at |ocation 15.

The input file SNSWaveForm5 must be lying around, and here what it looks like:

2

0. 0. 3124980 35. 0. -12. 0
0.7 0. 312498 65 0. -22. 0
0. 754761 0. 312516 75 0. - 25. 0
0. 810562 0. 312571 83 0. - 28. 0
0. 910526 0. 312764 90 0. - 30. 0.
0. 985233 0. 312987 100 0. - 38. 0
1.12105 0. 313561 106 0. - 35. 0
21.9333 0.911684 270 0 - 90. 0
22 0.911836 265 0 - 88. 0

This case used a dual harmonic RF.

4.4.2.2 Acceleration Output:
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To get output about acceleration, try usng showAccel er at e( Cst ream) . This routine dumps the
time (msec), synchronous particle kinetic energy (GeV), the bunch factor, the relativistic beta, the
synchronous phase (deg), the primary harmonic RF voltage, the syncrotron frequency, the
bucketHeight (eV), the bunch height (eV), the bucket area (eV-sec), the bunch area (eV-sec) and
the maximum dp/p (%) (al on asingleline). Here's an example of its use:

/1 Files for output:

runName = “ SNSRCS1”;
String nanel = runNane + ".out";
OFstream fi o(nanel, ios::out);

for (_i=1; _i <=28 ; _i++) [/ Do 3500 turns

doTurn( 125);
showAccel erate(fio); // send acceleration info to a file
showAccel erate(cout); // send acceleration info to the screen

}
4.5 Longitudinal Space Charge

A longitudinal space charge node (1) bins the longitudinal beam profile, (2) calculates the
longitudinal space charge force, and (3) applies a momentum kick, based on this space charge
force to the macro-particles. The longitudina profile calculated here is aso used as aweighting
factor for the transverse space charge kicks. Typically, only afew (or likely just one) of these
nodes will be used, as the longitudina profile does not change much during asingle turn. Thereis
a base longitudina space charge node class, which contains the basic members any
implementation will need. Presently, there is only one derived longitudina space charge
implementation, namely an FFT one.

45.1 FFT Longitudinal Space Charge

An FFT longitudina space charge kick node can be added anywhere in the ring with the
addFFTLSpaceChar ge routine. This routine takes 6 arguments:

A name for the node (String)

The index order used to place the node (Integer)

A vector containing the Z/n wall longitudinal coupling impedance (Complex vector)

The wall/beam radius ratio (Real)

A flag indicating whether kick values interpolated from the phase bins should be used (if ==
an interpolation scheme is used, otherwise a kick is calculated for each macro-particle’s
explicit phase). (Integer)

6 A minimum number of macro-particles required before the calculation is done. Typically
setting this number to ~ 100 prevents spurious numerical events. (Integer).

a b~ wdhNEF

Also the number of longitudinal bins to use is specified independently as the integer nLongBi ns.
The wall impedance input vector for argument 3 has values for each harmonic number, and should
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be dimensioned to at least the number of longitudinal bins/2 and isin units of Ohms. The real part
of element i contains the resistive impedance in Ohms /(harmonic number i) , and the imaginary
part of the vector contains the reactive part of the impedance (Ohms) /(harmonic number i).
Setting this vector = 0, is equivaent to ignoring wall impedance effects.

As an example of including an FFT longitudina space charge node consider:
FEEEEEEEErrr bbb

/1 Add an FFT Longitudi nal Space Charge Node

/1 wi thout wall inpedances

FEEEEEEEErrr bbb

Conpl exVect or Zl nped(16);

Zl mped = Conpl ex(0.,0.); /!l Since it is ==0, there will be no
/1 wall inmpedance effects included.
nLongBi ns = 32; /1 Use 32 longitudinal bins (It’s good to use
/1 a power of 2 for the FFT inpl ementation)
Real b _a = 2.; /1l Use this for wall/beam radius
I nt eger useAvg = 0; /1 Let’s not use the interpolation nethod

I nteger nMacroLSCM n = 100; // Require at |east 100 nacros present before
/1 trying to use this.

// Now let’s add it between the nodes with i ndexes of 10 and 20:

addFFTLSpaceChar ge("LSC1", 17, Zlnped, b_a, useAvg, nMacr oLSCM n);

Here' s an example of including an FFT longitudinal space charge node with wall impedance:

FEEEEEEEErrr bbb
/1 Add an FFT Longitudi nal Space Charge Node
/1 with wall inpedances

FEEEEEEEErrr bbb

Conpl exVect or ZI nped( 16) ;
ZI nped(1) = Conpl ex(115,53); // real part of 1° harnmonic is 115 Ohm
/1 imaginary part is 53 Chns,

Zl mped(2) = Conpl ex(110,67); // real part of 2nd harnmonic is 220 Chm
/! imaginary part is 134 Chnms,

Zl mped(3) = Conpl ex(130,53); // and so on

Zl nped(4) = Conpl ex(160, 27);

Zl mped(5) = Conpl ex(48, 12);

Zl nped(6) = Conpl ex(45,7);

Zl mped(7) = Conpl ex(43,6);

Zl nped(8) = Conpl ex(43,5);

Zl mped(9) = Conpl ex(44, 4);

Zl nped(10) = Compl ex(45, 3);

Zl mped(11) = Compl ex(45, 3);

Zl nped(12) = Compl ex(45, 3);

Zl mped(13) = Compl ex(45, 3);

Zl nped(14) = Compl ex(45, 3);

Zl nped(15) = Conpl ex(45, 3);

Zl nped(16) = Compl ex(45, 3);

nLongBi ns = 32; /1 Use 32 longitudinal bins (It’s good to use
/1 a power of 2 for the FFT inpl ementation)

Real b _a = 2.; /1l Use this for wall/beam radius

I nt eger useAvg = 0; /1 Let’s not use the interpolation nethod

I nteger nMacroLSCM n = 100; // Require at |east 100 nacros present before
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/1 trying to use this.
// Now let’s add it between nodes with i ndexes 10 and 20:

addFFTLSpaceChar ge("LSC1", 17, Zlnped, b_a, useAvg, nMacr oLSCM n);

4.6 Transver se Space Charge

The transverse space charge nodes provide a transverse kick due to the space charge force. There
isabase class called TransSC. There are presently three derived kinds of transverse space charge
nodes: (1) pair-wise sum, (2) brute-force Particle-In-Cell (PIC), and (3) and FFT PIC nodes. To
use any of these meaningfully it is necessary to add many of these nodes around a ring, including
at least one node per scale length of the beam shape variation and > 10 per betatron oscillation.
The easiest way to add these nodes is with the routines described below, which automatically
insert a node after each transfer matrix included in the lattice file. This requires generation of a
lattice file with sufficient fineness. As described above in Section 3.2.1, thisis easier usng MAD
than with DIMAD.

4.6.1 Pair-wise sum

The pair-wise sum transverse space charge method simply calculates the Coulomb force on one
particle by summing the force over all other particles. A smoothing parameter (e;) isincluded in
the calculation as an additional length used in calculating the particle separation distances.
Typicaly one uses a length very small compared to the beam transverse size, in which case it only
reduces the Coulomb force between near-neighbors. This smoothing parameter can prevent
spurious kicks. No binning is done with this scheme. This scheme is simple, but requires ~ (n,)?
operations to calculate the kicks, where n, is the number of macro-particles. Thisis exceedingly
dow, and has only been used for checking other faster methods. It is not recommended for normal
usage, but none-the-less may be implemented by:

Real epsSmooth = 0.5; /1 snoot hing paraneter in nm
I nt eger nMacroM n = 100; /1 m ni mum nunber of Macros to

/1 accunul ate before doing SC cal c.
addPW5Tr ansSCSet ( epsSnoot h, nMacroM n); // add the space charge node set.

4.6.2 Brute-Force PIC

A straight-forward PIC implementation is provided with the brute-force PIC Class. At each of
these nodes, the macro-particles are binned on a prescribed X-Y grid, the force at each grid point
is calculated using the binned particle distribution, and the force on each particle is calculated by a
bi-linear interpolation from the grid. The grid extent is determined by first calculating the macro-
particle extreme locations, and by making arectilinear grid extending a prescribed amount beyond
the particle extent. A smoothing parameter is also used in calculating the force between grid
points, similar to that described above (see Ref 5.). This smoothing parameter can be used if the
bins are sparsely populated, and should have magnitude comparable to the bin spacing. However,
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it is recommended to use enough macro-particles to populate the binsto at least 10 particles per
bin, and let the smoothing parameter ® O.

The dominant calculation time for this method is typically the force calculations on the grid, which
is~ (Nvin)”* operations. While this is faster than the pair-wise sum calculation described above, for
bin sizes >10, the FFT method described below is faster. A set of brute-force PIC transverse
space charge nodes may be added as.

Real epsSmooth = 0.5; /1 snoot hi ng paraneter in nm
I nteger nMacroM n = 100; // m ni mum nunber of Macros to
/1 accunul ate before doing SC cal c.
Real gridFac = 1.1; // Make grid extend 10% beyond nacro-particles
I nt eger nxBins = 10; /1 Nunber of horizontal bins
I nteger nyBins = 10; /1 Nunber of vertical bins

/! add the brute-force PIC space charge node set.

addBFTr ansSCSet ( nxBi ns, nyBi ns, epsSnooth, nMacroM n, gridFac);
46.3FFT-PIC

The fastest method of calculating the transverse space charge effectsiswith aset of FFT PIC
nodes. These nodes are similar to the brute-force PIC in that the calculation proceeds by first
binning macro-particles to agrid, then calculating the force distribution on the grid, and finally by
interpolating the force from the grid back to each macro-particle. The difference is that an FFT
method is used to calculate the force on the grid using the binned particle distribution. The grid is
determined automatically, by first cal culating the macro-particle extrema location, and by making
arectilinear grid centered at the average macro-particle (x,y) location, but extending twice as far
as any particle. This buffer of empty binsis provided to prevent any false force contributions from
the FFT method. This grid extent is not adjustable. A smoothing parameter similar to that used in
the brute-force PIC method is also provided. Namely, A smoothing parameter is also used in the
force calculation between grid points, as described in Ref 5. If apositive value is entered for the
smoothing parameter, it is taken to be alength relative to a grid size. If a negative value is entered
the smoothing parameter is taken to the absolute value of this number (in mm). This smoothing
parameter can be used if the bins are sparsely populated, and should be comparable to the bin
spacing. However, it is recommended to use enough macro-particles to populate the bins to at
least 10 particles per bin, and let the smoothing parameter ® O.

As with the brute-force PIC method, the dominant computation is in calculating the space charge
forces across the grid. Since this method uses an FFT implementation the computation requires
only ~ 2 ngin, (Nuin)? Operations.

NOTE: since an FFT method is employed here, the most efficient usage is to enter a number of
binsthat is a power of 2. The method will work for an arbitrary number of bins, but will likely
proceed less efficiently.

A set of FFT PIC transverse space charge nodes may be added as.
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Real epsSmooth = O0.; /1 don’t use snoot hing
I nt eger nMacroM n 100; /1 m ni mum nunber of Macros to
/1 accunul ate before doing SC cal c.
/1 Nunber of horizontal bins
/1 Nunber of vertical bins

I nt eger nxBi ns

= 64,
I nt eger nyBins = 64;

/1 add the FFT PIC space charge node set.

addFFTTr ansSCSet ( nxBi ns, nyBi ns, epsSnmooth, nMacroM n);

4.7 Thin Lens
Experimental.

4.8 Aperture

An aperture node can be placed anywhere in the ring to either (@) count particle hits beyond a
certain position (transparent), or (b) remove macro-particles from the tracking if they extend
beyond a certain position (non-transparent). The aperture position in the ring is determined by its
node index value. Generally the mechanism for determining what index value to useisto first read
in the transfer matrix set. An aperture can be placed after or before any of the transfer matrix
nodes. If you are not sure which transfer matrix node corresponds to the longitudinal ring position
you want to put the aperture at, read in the transfer matrix and do a“showRi ng(cout)” and a
“showTr ansMat ri x(cout )" to help figure out the node index where you would like to place the
aperture. As each transfer matrix index is incremented by 10 from the previous transfer matrix
index, just pick an index value between the two transfer matrices you are interested in. Y ou can
always do another “showRi ng( cout ) ” after adding the aperture node to see if you have it right.

4.8.1 Rectangular Aperture

Presently thisisthe only kind of aperture. The maximum and minimum positions are specified. An
example of adding arectangular apertureis:

FEEEEEEEErrr bbb

/! Add an aperture

/1l Put it after the 1st transfer matrix (node=11)
/1 The betax here is 9.2 mand the betay is 9.4 m

/1 1 know the sigma of the injected beamemttance is 10 mm nrad

/1 Let's figure the aperture postitions fromthese val ues.

/1 The last argunment is to nake it non-transparent, i.e. |ose particles.
/1

(EEEErrrr bbb bbb bbb rrrrrirrr

Real xM n, xMax, yMn, yMax;

XMn = -sqgrt(9.2 * 10.* 5.); // mnimm horizontal acceptance (mj
xMax = sqrt(9.2 * 10.* 5.); // maxi mum horizontal acceptance (mj
yMn = -sqgrt(9.4 * 10.* 5.); // mnimumvertical acceptance (nmm
yMax = sqrt(9.4 * 10.* 5.); [// maxi mumvertical acceptance (mm

I nteger tranparent = O;

addRect Aperture("Aperturel”, 11, xMn, xMax, yMn, yMax, transparent);
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For those who prefer to do setup calculations offline, the above could also be done with:

addRect Aperture("Aperturel”, 11, -21.448, 21.448, -21.679, 21.679, 0);

Note the transparent switch. If it isset to O (or False), the aperture will stop anything that hitsit,
remove it from its herd and store its information in the LostOnes object (see the section on the
MacroPart class). If the transparent switch is set to 1 (or True), only particle hits are calculated at
the aperture.

4.8.2 Getting Aperture Output

At some point you may want to see what the aperture has collected. The showAper t ur es routine
will dump some information about all aperturesin the ring:

showApert ures(cout); /1 show some aperture info to the screen

This output includes the aperture dimensions and how many particles have hit it. It is also possible
to get adump of all the lost particles for a herd with theroutine Particles:: dunpLostParts
. For example:

OFstream fi o(“aperture.dnp”, io0s::out);
dunpLost Parts(mai nHerd, fio); // dunp details of |lost particles to
/1 the file “aperture.dnp”

Thefirst line of thisfile contains a description of the information dumped for each lost particle.
Then aseparate lineis printed for each lost macro-particle containing the phase parameters x
(mm), X' (mrad), y (mm) , y' (mrad), f (rad), DE (GeV), the longitudinal ring position where the
macro-particle was lost (m), the node number where the macro-particle was lost, and the turn
number when the macro-particle was lost.



5 Miscellaneous M odules

5.1 Output Module

Many modules contain some built in output capabilities of their own, which are described in the
sections above. Additionally, some general information can be output from the Shell as desired by
the user. Output capabilities to the screen, plots and files are described in Reference 1. These
output capabilities can generally be done from the Shell, without requiring the need to add source
code.

However, severa canned text output routines are provided for commonly used output
capabilities.

Voi d showNodes( Gst ream &0S)
- "Routine to show all Node info to stream os"
Voi d showTransMat ri x( Ostream &os)
- "Routine to show TransferMatrix info to stream os";
Voi d showRi ng( Ost r eam &0s)
- "Routine to show all the ring information to stream os"”;
Voi d showTur nl nf o( Gst r eam &o0s)
- "Routine to show m sc. general turn information"
Voi d show nj ect (Ost ream &0s)
- "Sends Injection information to an Ostream”;
Voi d showroi | (Ost ream &0s)
- "Sends Foil information to an Ostream";
Voi d showTi m ng( Gstream &s, const Real &et)
- "Wites CPUtimng info to an Gstream”;
Voi d showSt art (Ostream &o0S)
- "Wites basic run input info to an Gstream"”;

Note: the argument to these routines can either be:

() cout - long buffered output to the screen,

(2) cerr - short buffered output to the screen, or

(3) any user defined stream.

A user defined stream called “f i o” to afile called “f i | eout ” can be created on the fly by
OFstreamfio(“fileout”, ios::out);

This stream will delete any previously defined file called “f i | eout ”. The command
OFstreamfio(“fileout”, ios::app);

issimilar, but will append the prescribed output to whatever exists (if anything) in afile called

“fileout”. SeeReference 1 for moreinformation on general inputting/outputting information
from the Shell.
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The string r unName can be defined at the beginning of arun. It is used in the showStart output
and on the plots (see below) for labeling output.

5.2 PlotsModule

The Plots module contains routines to produce phase space plots. It only is available if the code
was built with the PLPLOT environment variable defined to the installation directory of the
PLPLOT package (see section 1.1). Plots can be generated interactively on the screen or dumped
to a postscript file.

5.2.1 Built-in Plots
A number of commonly used accelerator physics plots are built in and described below.
5.2.1.1 Plotting to an X window

The horizontal, vertical, and longitudinal phase spaces of a herd can be plotted to an X-window
display with the commands:

pl ot Hori zontal (nmai nHerd); // plot the horizontal phase distribution
/1 of the main Herd

pl ot Verti cal ( mai nHer d) ; /1 plot the horizontal phase distribution
/1 of the main Herd

pl ot Longi t udi nal (mai nHerd) ;// plot the |ongitudi nal phase distribution
/1 of the main Herd

The real space distribution can be plotted to an X-window display with the command

pl ot XY( mai nHer d) ; /1 plot the real space distribution
/] of the main Herd

The longitudina phase distribution aong with the longitudinal space charge (if it has been
calculated) can be plotted to an X-window display with the command

pl ot LongSet ( mai nHer d) ; /1 plot the longitudinal space distribution
/1 of the main Herd and the |ong. space charge

The 3 phase space plots and the real space plot can al be plotted together ( 4 plots per page) on
an X-Window display with the command:

pl ot XW n( mai nHer d) ; /1 plot the all phase space distributions +
/1 real space dist. of the main Herd

5.2.1.2 Plotting to a postscript file
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The above built-in plots can also be sent to a postscript file. The commands to plot to afile called
test. ps are:

pl ot LongSet PS(mai nHerd, “test.ps”); /1 plot the |ongitudinal space

pl ot XYPS(mai nHerd, “test.ps”); /1 plot the real space distribution
pl ot Hori zont al PS(mai nHerd, “test.ps”);// plot the horizontal phase

pl ot Verti cal PS(mai nHerd, “test.ps”); [// plot the vertical phase

The 3 phase space plots and the real space plot can all be plotted together ( 4 plots per page) on
a postscript file with the command:

pl ot PS(mai nHerd, “testPlot.ps”); // plot the all phase space distributions
/1l + real space dist. of the main Herd to
/!l to a postscript file called testPlot.ps

5.2.1.3 Plot Settings

Any of the following quantities can be set while running, either in an input script file, or from the
shell prompt.

Histogram Bins

Each of the phase space plots also includes a histogram inset. The number of bins used in the
horizontal and vertical distributionsis given by nTr ansBi ns (default = 32). The number of bins
used in the energy spread distribution distributionsis given by nDel t aEBi ns (default = 32). The
number of bins used in the longitudinal phase is given by the number of bins used in the
longitudinal space charge calculation: nLongBi ns (default = 32).

Plot Ranges

The plot extents are given by:

XM nPI ot - Mnimumx for plots [m
xMaxPl ot - Maxi mum x for plots [
xPM nPlot - Mnimmx-prime for plots [nrad]
xPMaxPl ot - Maxi mum x-prime for plots [nrad]
yM nPl ot - Mnimumy for plots [m
yMaxPl ot - Maximumy for plots [
yPMnPlot - Mnimumy-prine for pos[mad]
yPMaxPl ot - Maxi mumy-prine for plots [nrad]
dEM nPl ot - M ninumvalue for dE plots [GeV]
dEMaxPl ot - Maxi num val ue for dE plots [GeV]

phi M nPl ot - M nimum val ue for the phase [rad]
phi MaxPl ot - Maxi mum val ue for the phase [rad]
LSCM nPl ot - M ni mum val ue for Long. space charge plots [kV]
LSCMaxPl ot - Maxi mum val ue for Long. space charge plots [kV]

Macro-particle plotting density
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The density of macro-particles plotted on any plot is controlled by the variable pl ot Freq. One
out of every pl ot Fr eq macro-particlesis plotted. It is advisable to set this Integer variable to be
> 1 for herd sizes > 10,000.

Plot labeling:

By default, the plots are labeled with the run name (define the string “r unNane”) the turn number.
This labeling can be suppressed, by setting ver bosePl ot = 0;

5.2.3 General plotting
The driver shell includes additional genera plotting capability. See the section on plotting in
Reference 1. Thisis useful for quick looks at vectors, etc. The code is distributed with the X-

window plotting driver active, but if you can get the Tcl-dp library running on your system, use of
this driver offers much superior interactive plotting flexibility.
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Apendix 1. Description of the ORBIT Base Classes.

Table A.1. Description of the Synchronous particle class.

(EEEEEErrrrr bbb bbb rrrrr i

CLASS NAME
SyncPart

| NHERI TANCE RELATI ONSHI PS
SyncPart -> Object -> | OSystem

USI NG CONTAI NI NG RELATI ONSHI PS

oj ect (V)
DESCRI PTI ON

A class for storing SyncPart

PUBLI C MEMBERS
SyncPart:
~SyncPart :
_mass
_charge
_eKinetic
_e0
_eTot al
_bet aSync
_gammaSync
_dppFac
_phi Coef

PROTECTED MEMBERS

None

PRI VATE MEMBERS
None.

Constructor for making SyncPart objects
Destructor for the SyncPart cl ass.
Mass (AMJ)

char ge nunber

ki netic energy (GeV)

rest mass (GeV)

total energy (GeV)

v/v_light

E/E O

conversion factor fromdE to dp/p
conversion fromlength to angl e phase

(E0EEEErrrrr bbb bbb rrrrrr i
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Table A.2 Description of the macro-particle class.

(EEEEEErrrrr bbb bbb rrrrrr i

/1

/] CLASS NAME

/1 Macr oPar t

/1

/1 1 NHERI TANCE RELATI ONSHI PS

/1 MacroPart -> Object -> | OSystem
/1

/1 USI NG CONTAI NI NG RELATI ONSHI PS

/1 vj ect (U)
/1 DESCRI PTI ON

/1 A class for storing macro particle info. The macro particles

/1 abstraction is for a "herd" of macroparticles. Note, we puposely

/1 to not store all atributes, statistics etc. about the macropartcles
/1 inthis class to keep the size as small as possible. Only the basic
/1 proprties are stored here. The hope is that keeping the size snall
/1 will increase the |ikelyhood of the nore-often used stuff getting
/1 into cache.

/1

/1 PUBLI C MEMBERS

/1 Macr oPart : Constructor for making MacroPart objects

/1 ~Macr oPart: Destructor for the MacroPart class.

/1 Real Vector:

/1 _X X (horizontal) position (m

/1 _Xp X prime position (nrad)

/1 Y y (vertical) position (nm

/1 _yp y prine position (nrad)

/1 _phi phase angle relative to synchronous particle (rad)
/1 _deltaE energy offset (GeV)

/1 _dp_p nmonent um dp/ p

/1 _fractLPosition Fractional position in longitudinal bin

/1 _LPosFact or Longi tudi nal weighting factor = local line density
/1 over the average |line density.

/1 1nteger Vector

/1 _LPosi ti onl ndex Longi t udi nal bin index

/1 _foilHts Nunmber of foil traversals.

/1 _XBin I nteger vector storing the horizontal bin |ocation
/1 _yBin I nteger vector storing the vertical bin Iocation
/1 Real Vector

/1 _xFractBin Fractional postion within a horizontal bin

/1 _yFractBin Fractional postion within a vertical bin

/1 Real

/1 XM n Mn x of herd (nm

/1 _xMax Max x of herd (nm

/1 _yMn Mn y of herd (nm

/1 _yMax Max y of herd (nm

/1 _phiMn M ni mum | ongi t udi nal phase of herd (rad)

/1 _phi Max Maxi mum | ongi t udi nal phase of herd (rad)

/1 _dEM n M ni mum del t aE of herd (GeV)

/1 _dEMax Maxi mum del t aE of herd (GeV)

/1 _bunchFact or [ ongi t udi nal (average/ peak) density ratio

/1 1nteger

/1 _nMacr os Nunber of nmacro particles presently in herd.

/1 _feel sHerds Switch to control interaction with other herds
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/1 O (default) = no interaction with other herds

/1 1 = feels, but doesn't push other herds

/1 _l ongBi nni ngDone flag to indicate if longitudinally binned yet

/1

/1 Node Info particular to the herd:

/1 _current Node the current Ring node the herd is at

/1 _nTur nsDone nunber of turns the herd has conpl eted

/1 _nPart Tur nsDone i ntegral of the nunber of turns * nunber of particles
/1

/1 Void routines:

/1 _reSi ze - resize (increase) the herd vectors to new size
/1 _fi ndXYPEXt rena - find the min/max _x, _y, _phi,extents

/1 _findDEEXt rema - find the mn/nmax deltaE extents

/1 _insertMacroPart - routines to add a macroparticle to a herd.

/1 _addLost Macr o - routine to nove a single particle fromthe herd to
/1 - the LostMacroParts object.

/1

/1 SyncPart &

/1 _syncPart Ref erence to the synchronous particle object

/1

/1 LostMacroParts

/1 _l ost Ones - place to store lost nacroparticle information.
/1

/| PROTECTED MEMBERS

/1 None

/1 PRI VATE MEMBERS

/1 None.

/1

(Ot bbb bbb rrrrr i
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Table A.3 Description of the Node class members,

(EEEEEErrrrr bbb bbb rrrrrr i

/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1
/1

CLASS NAME
Node

| NHERI TANCE RELATI ONSHI PS

Node -> (bject ->

| OSystem

USI NG CONTAI NI NG RELATI ONSHI PS
ohject (U, BSpline (O

DESCRI PTI ON
An abstract cl ass

PUBLI C MEMBERS
Node:
~Node:
String:
_nane
I nt eger:
_0i ndex
Real
_position
_length
Voi d:
_nodeCal cul at or
_updat ePar t At Node
_nameCQut

PROTECTED MEMBERS
None
PRI VATE MEMBERS
None.

for storing Node information.
Constructor for maki ng Node objects
Destructor for the Node cl ass.

Nane of node

Order index

Poistion in ring (m
Length of node (m

Routine to do prelimnary calculation for this Node.
Routine to call to do macroparticl e updates
Routine to return the node namne

(E0EEEErrrrr bbb bbb rrrrrr i
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Table A.4 Description of the DiagnosticBase class members.
R R

/] CLASS NAME
/1 Di agnosti cBase

/1

/1 1 NHERI TANCE RELATI ONSHI PS

/1 Di agnosti cBase -> (bj ect

/1

/1 US| NG CONTAI NI NG RELATI ONSHI PS
/1 None.

/1

/] DESCRI PTI ON

/1 This is a base class for storing D agnostic information.
/1

/1 PUBLI C MEMBERS

/1

/1 _np - reference to the macro particle herd we want info on

//  Virtual routines:

/1

/1 _diagCalcul ator - Routine that does the diagnostic calcul ation
/1 _showDi agnostic - Routine to show information to a stream

/1 - typically used for "human readabl e" out put
/1 _dunpDi agnostic - Routine to dunp data to a stream

/1 - typically used for creating file output for processing
/1

/| PROTECTED MEMBERS

/1 None

/1 PRI VATE MEMBERS

/1 None.

/1

(EEEEEErrrrr b bbb bbb r e rrrrrr i



