Data Correlation at SNS

Data correlation is needed to align data taken from different parts of the machine on the same cycle or to look back at archived data at some later point in time. To correlate data from the same accumulation cycle, a relative time stamp is all that’s required. However, if data is to be correlated to external events, such as power dips or thunderstorms, a timestamp that includes time and date is required.

Unix time is maintained as a 32 bit binary integer. Each bit represents one second. 232 seconds represents 136 years. Unix year zero is some date in the year 1970. SNS is expected to operate at 60 Hz. Each macropulse needs to be uniquely identified.

If we make the basic unit of time the macropulse, a local counter, located in hardware at each front end, being incremented by T0 or Prepulse could be appended to the data aquired on that pulse to identify which pulse the data is associated with. To ensure all the counters are "in sync", a timing event will be defined that periodically resets the counter. If each local counter is 16 bits, the maximum number of macropulses that can be counted before the counter rolls over, is 1,092 seconds or 18.2 minutes.

To ensure that all of the counters are counting from a common starting point, a beam sync event called time_stamp-reset will be defined. This hardware provided portion of the timestamp must be appended to a time and date portion that can either be downloaded to each IOC or front end module over the network or read by the IOC from a time server node. The time_stamp_reset event should occur often enough to re-sync newly rebooted hardware in a timely manor, say within 30 seconds, but infrequently enough that the network provided portion of the timestamp can reasonably be distributed over the network.

In order to guarantee that the network provided portion of the timestamp is not changing during the critical period when it is read, the time_stamp_reset event must be synchronized to the overall counting process. When the time-stamp_reset event occurs, the network supplied portion of the timestamp is stable until the next time_stamp_reset event occurs. This is true, because the reset event would be generated by a "carry" between the 2n stage of a binary counter and the 2n+1 stage. This binary counter is presettable to the correct time and day via a front end processor and would reside on a module located in the beam sync encoder chassis. When the carry takes place, the counter stages below the carry have just gone to zero, and the stages above the carry have just been incremented by one.

IOCs could use the time_stamp_reset event, as an interrupt, to periodically check to see that they are in sync with the global system clock, and would increment the local time by one, for each occurance of the time_stamp_reset event. There is no need to distribute the network portion of the time stamp to all locations on every cycle. Once a front end is "in sync" it can maintain its own time using the time_stamp_reset event and the PrePulse event.

For some systems, it is desirable to time stamp activities within the cycle. This is true in the case with the fast protect system. It is helpful to know when the trip occurred during the cycle. To accomplish this, I propose using the 1.05 MHz ring rotation clock (distributed by the timing system) to increment another time stamp counter stage. This counter would be reset at the beginning of each accumulation cycle by the prepulse event. The time in this field would be relative, and the maximum count in the field would vary from PrePulse to PrePulse with the line frequency variation and ring rotation frequency variation, but would be a constant for all systems for a given cycle. Systems not requiring this portion of the timestamp, could return "0" in this field (?).

In summary, the time stamp is comprised of three fields, an (optional) ring turns field incremented by the 1.05 MHz RF clock and reset at the beginning of each accumulation cycle. A cycle pulse, incremented by the cycle PrePulse and reset by the time_stamp_reset event. And the third field incremented by the time_stamp_reset event.

